#include #include "triton/driver/buffer.h" #include "triton/driver/backend.h" #include "triton/driver/stream.h" #include "triton/jit.h" #define EIGEN_USE_GPU #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/shape_inference.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/util/cuda_kernel_helper.h" #include "tensorflow/core/util/padding.h" #include "tensorflow/core/util/tensor_format.h" #include "tensorflow/core/framework/common_shape_fns.h" using namespace tensorflow; using GPUDevice = Eigen::GpuDevice; const char* src = R"( const tunable int32 TM = {16, 32, 64, 128}; const tunable int32 TN = {16, 32, 64, 128}; const tunable int32 TK = {8}; const tunable int32 GZ = {1}; void matmul(restrict read_only fp32 *A, restrict read_only fp32 *B, fp32 *C, int32 M, int32 N, int32 K, int32 lda, int32 ldb, int32 ldc, int32 *locks, int32 grid0, int32 grid1) { int32 rxa[TM] = get_global_range[TM](0); int32 ryb[TN] = get_global_range[TN](1); int32 rz = get_global_range[1](2); int32 rka[TK] = 0 ... TK; int32 rkb[TK] = 0 ... TK; fp32 c[TM, TN] = 0; int32 div = K / GZ; int32 rem = K % GZ; K = select(rz < rem, div - 1, div); int32 offk = select(rz < rem, rz*(div + 1), rz*div + rem); fp32* pa[TM, TK] = A + (offk + rka[newaxis, :])*lda + rxa[:, newaxis]; fp32* pb[TN, TK] = B + (offk + rkb[newaxis, :])*ldb + ryb[:, newaxis]; fp32 a[TM, TK] = *pa; fp32 b[TN, TK] = *pb; int32 last_a = ((M*K - 1) - (TM*TK + 1)) / lda; int32 last_b = ((K*N - 1) - (TN*TK + 1)) / ldb; last_a = last_a / TK * TK; last_b = last_b / TK * TK; int32 bound = K - max(last_a, last_b); for(int32 k = K; k > bound; k = k - TK){ c = dot(a, trans(b), c); pa = pa + TK*lda; pb = pb + TK*ldb; a = *pa; b = *pb; } int32 rxc[TM] = get_global_range[TM](0); int32 ryc[TN] = get_global_range[TN](1); for(int32 k = bound; k > 0; k = k - 1){ int1 checka[TM, 1] = rxc[:, newaxis] < M; int1 checkb[TN, 1] = ryc[:, newaxis] < N; fp32* pa[TM, 1] = A + (offk + K - k)*lda + rxc[:, newaxis]; fp32* pb[TN, 1] = B + (offk + K - k)*ldb + ryc[:, newaxis]; fp32 a[TM, 1] = checka ? *pa : 0; fp32 b[TN, 1] = checkb ? *pb : 0; c = dot(a, trans(b), c); } int32 ridx = get_range_id(0); int32 ridy = get_range_id(1); fp32* pc[TM, TN] = C + ryc[newaxis, :]*ldc + rxc[:, newaxis]; int32 *plock = locks + ridx + ridy*grid0; while(__atomic_cas(plock, 0, 1)); int32 *pcount = plock + grid0*grid1; int32 count = *pcount; int32 countp1 = select(count == GZ - 1, 0, count + 1); int1 checkc0[TM] = rxc < M; int1 checkc1[TN] = ryc < N; int1 checkc[TM, TN] = checkc0[:, newaxis] && checkc1[newaxis, :]; if(count == 0) { @checkc *pc = c; *pcount = countp1; } else { @checkc *pc = c + *pc; *pcount = countp1; } __atomic_cas(plock, 1, 0); } )"; REGISTER_OP("Dot") .Input("a: T") .Input("b: T") .Input("locks: int32") .Output("c: T") .Attr("T: {float}") ; class BlockSparseGemmOp : public OpKernel { public: explicit BlockSparseGemmOp(OpKernelConstruction* context) : OpKernel(context) { } void Compute(OpKernelContext* context){ // get device/stream GPUDevice device = context->eigen_device(); triton::driver::cu_stream sstream(device.stream(), false); triton::driver::context* ctx = sstream.context(); triton::driver::stream* stream = &sstream; // get inputs const Tensor& a = context->input(0); const Tensor& b = context->input(1); const Tensor& locks = context->input(2); // get shapes const int32_t M = a.dim_size(0); const int32_t N = b.dim_size(0); const int32_t K = a.dim_size(1); // allocate output Tensor* c = nullptr; TensorShape out_shape({(int64)M, (int64)N}); OP_REQUIRES_OK(context, context->allocate_output(0, out_shape, &c)); // return early if possible if (out_shape.num_elements() == 0) return; // initialize default compute device triton::jit jit(ctx); // matrix multiplication parameters triton::driver::cu_buffer da(ctx, (CUdeviceptr)a.flat().data(), false); triton::driver::cu_buffer db(ctx, (CUdeviceptr)b.flat().data(), false); triton::driver::cu_buffer dc(ctx, (CUdeviceptr)c->flat().data(), false); triton::driver::cu_buffer dlocks(ctx, (CUdeviceptr)locks.flat().data(), false); stream->synchronize(); // just-in-time compile source-code jit.add_module("matmul", src, {16, 2, 64, 16, 2, 64, 16, 8, 2, 2, 8, 8, 8, 1}); triton::driver::kernel* kernel = jit.get_function("matmul"); triton::jit::launch_information info = jit.get_launch_info("matmul"); // launch info unsigned TM = info.global_range_size[0]; unsigned TN = info.global_range_size[1]; unsigned nthreads = info.num_threads; unsigned GZ = jit.get_int("GZ"); std::array grid = {(M + TM - 1)/TM, (N + TN - 1)/TN, GZ}; // set argument kernel->setArg(0, *da.cu()); kernel->setArg(1, *db.cu()); kernel->setArg(2, *dc.cu()); kernel->setArg(3, M); kernel->setArg(4, N); kernel->setArg(5, K); kernel->setArg(6, M); kernel->setArg(7, N); kernel->setArg(8, M); kernel->setArg(9, *dlocks.cu()); kernel->setArg(10, grid[0]); kernel->setArg(11, grid[1]); stream->enqueue(kernel, grid, {nthreads, 1, 1}); } private: }; REGISTER_KERNEL_BUILDER(Name("Dot").Device(DEVICE_GPU).TypeConstraint("T"), BlockSparseGemmOp);