#include #include #include #include #include #include "triton/codegen/selection/selection.h" #include "triton/runtime/function.h" #include "triton/lang/lang.h" #include "triton/driver/device.h" #include "triton/driver/stream.h" #include "triton/driver/kernel.h" #include "triton/driver/module.h" #include "triton/ir/module.h" #include "triton/ir/function.h" #include "triton/tools/bench.hpp" typedef struct yy_buffer_state * YY_BUFFER_STATE; extern int yyparse(); extern YY_BUFFER_STATE yy_scan_string(const char * str); extern void yy_delete_buffer(YY_BUFFER_STATE buffer); extern triton::lang::translation_unit *ast_root; using namespace triton; inline std::string to_tf_ty(ir::type *ty) { if(ty->is_integer_ty(1)) return "bool"; if(ty->is_integer_ty(8)) return "int8"; if(ty->is_integer_ty(16)) return "int16"; if(ty->is_integer_ty(32)) return "int32"; if(ty->is_integer_ty(64)) return "int64"; if(ty->is_half_ty()) return "float16"; if(ty->is_float_ty()) return "float32"; if(ty->is_double_ty()) return "float64"; if(ty->is_pointer_ty()) return "Tensor"; throw std::runtime_error("unknown type"); } inline std::string to_tf_scalar_ty(ir::type *ty) { if(ty->is_pointer_ty()) return to_tf_ty(ty->get_pointer_element_ty()); else { return to_tf_ty(ty); } } inline std::string ref_to_tf_ty(ir::type *ty) { std::string res = to_tf_ty(ty); if(ty->is_pointer_ty()) res = "const " + res + "&"; return res; } inline triton::lang::translation_unit *make_ast(const char *src) { YY_BUFFER_STATE buffer = yy_scan_string(src); yyparse(); yy_delete_buffer(buffer); triton::lang::translation_unit *program = ast_root; return program; } inline std::unique_ptr make_ir(ir::context& ctx, triton::lang::translation_unit *program) { // create Triton-IR from AST ir::module* module = new ir::module("", ctx); program->codegen(module); return std::unique_ptr(module); } std::string make_tensorflow_src(const std::string src, const std::vector& outputs, const std::string& macro) { triton::lang::translation_unit *ast = make_ast(src.c_str()); triton::ir::context context; std::unique_ptr ir = make_ir(context, ast); // extract function signature ir::function* fn = ir->get_function_list().front(); ir::function_type* fn_ty = fn->get_fn_type(); // numberof arguments size_t n_args = fn_ty->get_num_params(); size_t n_outputs = outputs.size(); // extract function name std::string name = fn->get_name(); name[0] = static_cast(std::toupper(name[0])); std::string classname = name + "Op"; // extract argument name std::vector arg_names; for(ir::argument *arg: fn->args()) arg_names.push_back(arg->get_name()); // cached int to str std::vector str_i; for(size_t i = 0; i < fn_ty->get_num_params(); i++) str_i.push_back(std::to_string(i)); // index of tensors std::vector ptr_idx; for(unsigned i = 0; i < fn_ty->get_num_params(); i++) if(fn_ty->get_param_ty(i)->is_pointer_ty()) ptr_idx.push_back(i); // extract tensorflow types std::vector tf_scalar_tys; std::transform(fn_ty->params_begin(), fn_ty->params_end(), std::back_inserter(tf_scalar_tys), to_tf_scalar_ty); std::vector tf_cref_tys; std::transform(fn_ty->params_begin(), fn_ty->params_end(), std::back_inserter(tf_cref_tys), ref_to_tf_ty); std::ostringstream oss; std::string result = R"( #include "triton/driver/buffer.h" #include "triton/driver/backend.h" #include "triton/driver/stream.h" #include "triton/runtime/function.h" #define EIGEN_USE_GPU #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/shape_inference.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/util/cuda_kernel_helper.h" #include "tensorflow/core/util/padding.h" #include "tensorflow/core/util/tensor_format.h" #include "tensorflow/core/framework/common_shape_fns.h" using namespace tensorflow; using GPUDevice = Eigen::GpuDevice; namespace rt = triton::runtime; namespace drv = triton::driver; std::string src = R"TTKERNSRC( )" + src + ")TTKERNSRC\";" + R"( class )" + classname + R"(: public OpKernel { public: explicit )" + classname + R"((OpKernelConstruction* context) : OpKernel(context), fn_(src) { } void Compute(OpKernelContext* context){ // get device/stream GPUDevice device = context->eigen_device(); drv::cu_stream sstream(device.stream(), false); drv::context* ctx = sstream.context(); drv::stream* stream = &sstream; // extract inputs)"; for(unsigned i = 0; i < n_args; i++){ std::string suffix = ""; std::string ty = tf_cref_tys[i]; if(!fn_ty->get_param_ty(i)->is_pointer_ty()) suffix = ".scalar<" + ty + ">()()"; result += R"( )" + ty + " " + arg_names[i] + " = context->input(" + str_i[i] + ")" + suffix + ";"; } result += R"( // extract outputs)"; for(unsigned i = 0; i < n_outputs; i++) result += R"( context->set_output()" + str_i[i] + ", " + arg_names[outputs[i]] + ");"; result += R"( // wrap tensors)"; for(size_t i: ptr_idx) result += R"( drv::cu_buffer cu_)" + arg_names[i] + "(ctx, " + arg_names[i] + ".tensor_data().size(), (CUdeviceptr)" + arg_names[i] + R"(.tensor_data().data(), false);)"; std::regex regex("#([a-zA-Z]([a-zA-Z]|[0-9])*)"); std::string grid_str = std::regex_replace(macro, regex, "x.at(\"$1\")"); result += R"( // create launch grid; auto grid = [&](const rt::params_t& x) { return rt::grid_t{)" + grid_str + R"(}; };)"; result += R"( // execute function fn_({ )"; for(unsigned i = 0; i < n_args; i++){ std::string arg = arg_names[i]; if(fn_ty->get_param_ty(i)->is_pointer_ty()) arg = "&cu_" + arg; if(i > 0) result += ", "; result += arg; } result += R"( }, grid, stream); } private: rt::function fn_; }; REGISTER_KERNEL_BUILDER(Name(")" + name + "\").Device(DEVICE_GPU)"; for(size_t i = 0; i < tf_scalar_tys.size(); i++){ std::string arg_name = arg_names[i]; std::transform(arg_name.begin(), arg_name.end(), arg_name.begin(), [](char c) { return std::tolower(c);}); if(!fn_ty->get_param_ty(i)->is_pointer_ty()) result += ".HostMemory(\"" + arg_name + "\")"; } result += ", " + classname + R"(); REGISTER_OP(")" + name + "\")\n"; for(size_t i = 0; i < tf_scalar_tys.size(); i++){ bool is_output = std::find(outputs.begin(), outputs.end(), i) != outputs.end(); std::string mode = is_output ? "Input" : "Input" ; std::string arg_name = arg_names[i]; std::transform(arg_name.begin(), arg_name.end(), arg_name.begin(), [](char c) { return std::tolower(c);}); result += " .Input(\"" + arg_name + ": " + tf_scalar_tys[i] + "\")\n"; } for(size_t i = 0; i < outputs.size(); i++){ result += " .Output(\"out: " + tf_scalar_tys[outputs[i]] + "\")\n"; } result += ";\n"; return result; } PYBIND11_MODULE(libtriton, m) { m.doc() = "Python bindings to the C++ Triton API"; m.def("make_tensorflow_src", &make_tensorflow_src, "Creates C++ source code for a custom Tensorflow op corresponding to the specified Triton kernel"); }