#include #include #include #include #include #include #include #include "triton/codegen/analysis/axes.h" #include "triton/codegen/analysis/allocation.h" #include "triton/codegen/analysis/liveness.h" #include "triton/codegen/analysis/align.h" #include "triton/codegen/analysis/swizzle.h" #include "triton/codegen/transform/coalesce.h" #include "triton/codegen/transform/dce.h" #include "triton/codegen/transform/peephole.h" #include "triton/codegen/transform/membar.h" #include "triton/codegen/transform/reassociate.h" #include "triton/codegen/transform/cts.h" #include "triton/codegen/transform/disassociate.h" #include "triton/codegen/selection/generator.h" #include "triton/codegen/transform/pipeline.h" #include "triton/runtime/function.h" #include "triton/lang/cpp.h" #include "triton/lang/parser.h" #include "triton/lang/code_gen.h" #include "triton/driver/device.h" #include "triton/driver/stream.h" #include "triton/driver/kernel.h" #include "triton/driver/module.h" #include "triton/driver/error.h" #include "triton/ir/module.h" #include "triton/ir/function.h" #include "triton/ir/print.h" #include "triton/runtime/error.h" #include "triton/tools/bench.hpp" #include "triton/tools/sha1.hpp" #include "triton/tools/sys/getenv.hpp" #include "triton/tools/sys/mkdir.hpp" #include "llvm/IR/Module.h" #include #include namespace triton{ namespace runtime { /* --------------------------------- */ /* --------------------------------- */ /* --------------------------------- */ std::shared_ptr kernel::src_to_ir(const std::string& _src, const options_t& opt) { std::string src = R"( #define bool _Bool #define true 1 #define false 0 #define __readonly __attribute__((readonly)) #define __writeonly __attribute__((writeonly)) #define __noalias __attribute__((noalias)) #define __aligned(A) __attribute__((aligned(A))) #define __multipleof(A) __attribute__((multipleof(A))) #define __retune __attribute__((retune)) #define F32_INFINITY bitcast(0x7F800000) #define F16_INFINITY bitcast((int16)0x7C00) #define min(a,b) (((a)<(b))?(a):(b)) #define max(a,b) (((a)>(b))?(a):(b)) #define PASTER(a, b, _) a ## _ ## b #define EVALUATOR(a, b, _) PASTER(a, b, _) #define atomic_add(TYPE, TM, TN) EVALUATOR(atomic_add, EVALUATOR(TYPE, EVALUATOR(TM, TN, x), _), _) #define DECLARATION(TYPE, TM, TN) extern void atomic_add(TYPE, TM, TN)(TYPE*[TM, TN], TYPE[TM, TN], bool[TM, TN]) DECLARATION(float, 64, 64); DECLARATION(float, 64, 128); DECLARATION(float, 128, 64); DECLARATION(float, 128, 128); extern void atomic_add_half_1x1(half*, half, bool); DECLARATION(half , 64, 64); DECLARATION(half , 64, 128); DECLARATION(half , 128, 64); DECLARATION(half , 128, 128); extern void atomic_add_float_1x1(float*, float, bool); extern int atomic_cas(int*, int, int); extern int atomic_xchg(int*, int); extern int get_program_id(int); extern void __debug_barrier(); extern int get_num_programs(int); extern int select(bool, int, int); extern char __constant__ * calloc(int); typedef unsigned char uint8; typedef unsigned short uint16; typedef unsigned int uint32; typedef unsigned long uint64; typedef char int8; typedef short int16; typedef int int32; typedef long int64; )"; src += _src; // pre-process TokenSequence tokens; Preprocessor cpp(&src, true); for(auto it: opt.defines) cpp.AddMacro(it.first, &it.second); cpp.Process(tokens); // src -> ast Parser parser(tokens); parser.Parse(); // ast -> triton-ir auto ret = std::make_shared(""); Generator gen(&parser); gen.Gen(&*ret); return ret; } std::tuple, std::shared_ptr, size_t> kernel::ir_to_bin(ir::module &ir, driver::device* dev, const options_t& opt) { // generate llvm code llvm::LLVMContext ctx; std::string name = ir.get_function_list()[0]->get_name(); std::unique_ptr llvm(new llvm::Module(name, ctx)); // optimizations std::unique_ptr target = dev->make_target(); bool cts_use_async = target->as_nvidia()->sm() >= 80; // create passes codegen::analysis::align align; codegen::analysis::axes axes; codegen::transform::cts cts(cts_use_async); codegen::transform::pipeline pipeline(cts_use_async); codegen::transform::disassociate disassociate; codegen::analysis::layouts layouts(&axes, &align, opt.num_warps, target.get()); codegen::analysis::liveness liveness(&layouts); codegen::analysis::swizzle swizzle(&layouts, target.get()); codegen::analysis::allocation allocation(&liveness); codegen::transform::membar barriers(&liveness, &layouts, &allocation); codegen::transform::dce dce; codegen::transform::peephole peephole(target.get(), &layouts); codegen::transform::reassociate reassociate; codegen::transform::coalesce coalesce(&align, &layouts); codegen::generator isel(&axes, &layouts, &align, &allocation, &swizzle, target.get(), opt.num_warps); // run passes dce.run(ir); pipeline.run(ir); dce.run(ir); disassociate.run(ir); dce.run(ir); align.run(ir); axes.run(ir); layouts.run(ir); peephole.run(ir); dce.run(ir); // ir::print(ir, std::cout); if(target->is_gpu()) cts.run(ir); align.run(ir); axes.run(ir); layouts.run(ir); coalesce.run(ir); dce.run(ir); align.run(ir); dce.run(ir); if(target->is_gpu()){ reassociate.run(ir); cts.run(ir); } dce.run(ir); align.run(ir); axes.run(ir); layouts.run(ir); peephole.run(ir); dce.run(ir); align.run(ir); axes.run(ir); layouts.run(ir); swizzle.run(ir); liveness.run(ir); allocation.run(ir); barriers.run(ir); isel.visit(ir, *llvm); std::shared_ptr mod(driver::module::create(dev, std::move(llvm))); std::shared_ptr ker(driver::kernel::create(&*mod, name.c_str())); size_t shared_mem = allocation.allocated_size(); return std::make_tuple(mod, ker, shared_mem); } kernel::kernel(const std::string& src, const options_t& opt, driver::device *dev, const std::map &attrs): opt(opt), dev_(dev) { // compile to Triton IR ir_ = src_to_ir(src, opt); // add attributes for(const auto&x: attrs) ir_->get_function_list()[0]->add_attr(x.first, x.second); // compile to binary std::tie(mod_, ker_, shared_mem_) = ir_to_bin(*ir_, dev, opt); } void kernel::operator()(const std::string& args, driver::stream *stream, const std::vector& _grid) const{ // set grid if(_grid.size() > 3) throw std::runtime_error("grid size must be no greater than 3"); std::array grid; for(size_t i = 0; i < 3; i++) grid[i] = (i < _grid.size()) ? _grid[i] : 1; // enqueue stream->enqueue(&*ker_, grid, {(size_t)opt.num_warps * 32, 1, 1}, (void*)args.data(), args.size(), shared_mem_); } std::string kernel::get_asm(asm_mode_t mode) { switch(mode){ case ASM_LLIR:{ return ((driver::cu_module*)mod_.get())->llir(); } case ASM_NV_PTX: case ASM_NV_SASS:{ std::string ptx = ((driver::cu_module*)mod_.get())->ptx(); // SASS std::string input = std::tmpnam(nullptr); std::string output = std::tmpnam(nullptr); std::ofstream ofs(input); ofs << ptx; ofs.close(); if(mode == ASM_NV_PTX) return ptx; std::string cmd; int err; // compile ptx driver::cu_device* cu_device = (driver::cu_device*)dev_; cmd = "ptxas --gpu-name=sm_" + std::to_string(cu_device->compute_capability()) + " " + input + " -o " + input + ".o"; err = system(cmd.c_str()); // disassemble cmd = "cuobjdump --dump-sass " + input + ".o >> " + output; err = system(cmd.c_str()); std::regex comment(" *\\/\\* 0x[0-9a-f]+ \\*\\/"); std::string to_delete = " /*"; std::ifstream ifs(output); std::string line; std::string sass; while(std::getline(ifs, line)) if(!std::regex_match(line, comment)) sass += line + "\n"; return sass; } default: return ""; } } /* --------------------------------- */ /* --------------------------------- */ /* --------------------------------- */ function::function(const std::string& src, const options_t &opt, driver::device *device, const std::vector &tune_confs, const std::vector& tune_key) : src_(src), device_(device) { // kernel options size_t num_opts = std::max(tune_confs.size(), (size_t)1); opts_ = std::vector(num_opts, opt); for(size_t i = 0; i < tune_confs.size(); i++){ opts_[i].defines.insert(tune_confs[i].defines.begin(), tune_confs[i].defines.end()); opts_[i].num_warps = tune_confs[i].num_warps; } std::shared_ptr ir = kernel::src_to_ir(src, opts_[0]); std::vector args = ir->get_function_list()[0]->args(); // signature auto convert = [](ir::type *ty) { if(ty->is_integer_ty(1)) return INT1_T; if(ty->is_integer_ty(8)) return INT8_T; if(ty->is_integer_ty(16)) return INT16_T; if(ty->is_integer_ty(32)) return INT32_T; if(ty->is_integer_ty(64)) return INT64_T; if(ty->is_half_ty()) return HALF_T; if(ty->is_float_ty()) return FLOAT_T; if(ty->is_double_ty()) return DOUBLE_T; if(ty->is_pointer_ty()) return BUFFER_T; throw std::runtime_error("unknown type"); }; for(ir::argument* arg: args) sig_.push_back(convert(arg->get_type())); // find indices of autotune keys for(const std::string& name: tune_key){ auto pred = [&](ir::argument* arg) { return arg->get_name() == name; }; // std::cout << "----" << std::endl; // for(ir::argument* arg: args) // std::cout << arg->get_name() << std::endl; auto it = std::find_if(args.begin(), args.end(), pred); if(it == args.end()) throw std::runtime_error(name + " is not a valid argument name"); key_idxs_.push_back(std::distance(args.begin(), it)); } // find indices of pointer for(size_t i = 0; i < args.size(); i++) if(args[i]->get_type()->is_pointer_ty() || args[i]->get_type()->is_integer_ty()) align_idxs_.push_back(i); // argument size and offset size_t curr = 0; for(arg_type ty: sig_){ arg_size_.push_back(size_of(ty)); arg_off_.push_back(curr); curr += arg_size_.back(); } } uint64_t pow2_divisor(uint64_t N){ if(N % 16 == 0) return 16; if(N % 8 == 0) return 8; if(N % 4 == 0) return 4; if(N % 2 == 0) return 2; return 1; } kernel* function::autotune(const std::string &args, const grid_fn_ty& grid_fn, driver::stream* stream) { // align key std::vector rt_key(align_idxs_.size(), 0); for(size_t i = 0; i < align_idxs_.size(); i++){ int idx = align_idxs_[i]; uint64_t tmp = 0; std::memcpy((void*)&tmp, (void*)((char*)args.data() + arg_off_[idx]), arg_size_[idx]); rt_key[i] = pow2_divisor(tmp); } // auto-tuning key std::vector at_key(key_idxs_.size(), 0); for(size_t i = 0; i < at_key.size(); i++){ int idx = key_idxs_[i]; std::memcpy((void*)&at_key[i], (void*)((char*)args.data() + arg_off_[idx]), arg_size_[idx]); } // cache key std::vector cache_key; cache_key.reserve(rt_key.size() + at_key.size()); cache_key.insert(cache_key.end(), rt_key.begin(), rt_key.end()); cache_key.insert(cache_key.end(), at_key.begin(), at_key.end()); auto it = cache_.find(cache_key); if(it != cache_.end()) return it->second; // compile kernels if(kernels_.find(rt_key) == kernels_.end()){ std::map attrs; for(size_t i = 0; i < align_idxs_.size(); i++){ bool is_ptr = sig_[align_idxs_[i]] == BUFFER_T; attrs.insert({align_idxs_[i] + 1, ir::attribute(is_ptr ? ir::aligned : ir::multiple_of, rt_key[i])}); } for(const options_t& opt: opts_) kernels_[rt_key].emplace_back(new kernel(src_, opt, device_, attrs)); } // run auto-tuner double best_ts = INFINITY; auto& kernels = kernels_.at(rt_key); kernel* ret = nullptr; if(kernels.size() == 1) ret = &*kernels.back(); else{ for(auto ¤t : kernels_.at(rt_key)){ auto grid = grid_fn(current->opt); while(grid.size() < 3) grid.push_back(1); double ts = tools::bench([&]() { (*current)(args, stream, grid); }, stream, 5, 20); ret = (ts < best_ts) ? &*current : ret; best_ts = std::min(ts, best_ts); } stream->synchronize(); } it = cache_.insert({cache_key, ret}).first; return it->second; } void function::operator()(const std::string& args, const grid_fn_ty& grid_fn, driver::stream *stream) { runtime::kernel* fn = autotune(args, grid_fn, stream); (*fn)(args, stream, grid_fn(fn->opt)); } } }