#include "mlir/Analysis/SliceAnalysis.h" #include "mlir/Dialect/SCF/SCF.h" #include "mlir/IR/BlockAndValueMapping.h" #include "mlir/IR/BuiltinAttributes.h" #include "mlir/IR/Matchers.h" #include "mlir/IR/PatternMatch.h" #include "mlir/IR/Verifier.h" #include "mlir/Pass/Pass.h" #include "mlir/Support/LogicalResult.h" #include "mlir/Transforms/GreedyPatternRewriteDriver.h" #include "triton/Dialect/TritonGPU/IR/Dialect.h" #include "triton/Dialect/TritonGPU/Transforms/Passes.h" #include using namespace mlir; static bool isSharedLayout(Value v) { if (auto tensorType = v.getType().dyn_cast()) { Attribute encoding = tensorType.getEncoding(); return encoding.isa(); } return false; } namespace { #include "TritonGPUCombine.inc" // ----------------------------------------------------------------------------- // // ----------------------------------------------------------------------------- // Layout conversions can't deduce their return type automatically. // IIUC they are therefore not handled by DRR right now class SimplifyConversion : public mlir::RewritePattern { public: SimplifyConversion(mlir::MLIRContext *context) : mlir::RewritePattern(triton::gpu::ConvertLayoutOp::getOperationName(), 2, context) {} mlir::LogicalResult matchAndRewrite(mlir::Operation *op, mlir::PatternRewriter &rewriter) const override { if (!llvm::isa(op)) return mlir::failure(); // convert to the same layout -- we can delete if (op->getResultTypes() == op->getOperandTypes()) { rewriter.replaceOp(op, op->getOperands()); return mlir::success(); } Operation *arg = op->getOperand(0).getDefiningOp(); // block argument if (!arg) return mlir::failure(); // cvt(type2, cvt(type1, x)) -> cvt(type2, x) if (llvm::isa(arg)) { rewriter.replaceOpWithNewOp( op, op->getResultTypes().front(), arg->getOperand(0)); return mlir::success(); } // cvt(type1, splat(type2, x)) -> splat(type1, x) if (auto splat = llvm::dyn_cast(arg)) { rewriter.replaceOpWithNewOp(op, op->getResultTypes(), splat.src()); return mlir::success(); } // cvt(type1, make_range(type2, x)) -> make_range(type1, x) if (auto range = llvm::dyn_cast(arg)) { rewriter.replaceOpWithNewOp( op, op->getResultTypes(), range.start(), range.end()); return mlir::success(); } // cvt(type, constant) -> constant if (auto cst = llvm::dyn_cast(arg)) if (auto ret = cst.getValue().dyn_cast()) { auto newRet = SplatElementsAttr::get(op->getResultTypes().front(), ret.getSplatValue()); rewriter.replaceOpWithNewOp(op, newRet); return mlir::success(); } return mlir::failure(); } }; // ----------------------------------------------------------------------------- // // ----------------------------------------------------------------------------- // Layout conversions are expensive. They require going through // shared memory, which is orders of magnitude slower than // other non-i/o operations in the dialect. // It therefore makes sense to remove them whenever possible, // even if it means rematerializing all values whose definitions // are reachable from it without passing through any memory operation. class PullConversionToSource : public mlir::RewritePattern { public: PullConversionToSource(mlir::MLIRContext *context) : mlir::RewritePattern(triton::gpu::ConvertLayoutOp::getOperationName(), 3, context) {} void getReachableNotThroughMemOp( ArrayRef operands, SmallVectorImpl &postOrderRet) const { struct State { Value value; unsigned operandIndex; }; SmallVector worklist; for (auto operand : operands) worklist.push_back({operand, 0}); while (!worklist.empty()) { State &state = worklist.back(); auto *opInst = state.value.getDefiningOp(); // Note: getDefiningOp will return nullptr if the operand is not an // Operation (i.e., block arguments) which is a terminator for the search. if (opInst == nullptr) { worklist.pop_back(); continue; } // if we encounter a memory operation, then // we can assume it's not worth doing any // rematerialization: layout conversion // will be cheaper if (isa( opInst)) return; // we don't want to rematerialize conversions if (isa(opInst)) return; // visit operands if (state.operandIndex < opInst->getNumOperands()) { auto nextOperand = opInst->getOperand(state.operandIndex); ++state.operandIndex; worklist.push_back({nextOperand, 0}); } else { // Post-visit: done visiting operand, pop off stack. // and add to post-order result worklist.pop_back(); postOrderRet.push_back(opInst); } } } Attribute invertEncoding(Type targetType, Operation *op) const { RankedTensorType targetTensorType = targetType.cast(); if (auto expand_dims = dyn_cast(op)) { return targetTensorType.getEncoding() .cast() .squeeze(expand_dims.axis()); } return targetTensorType.getEncoding(); } mlir::LogicalResult matchAndRewrite(mlir::Operation *cvt, mlir::PatternRewriter &rewriter) const override { if (!llvm::isa(cvt)) return mlir::failure(); // constants/splat are handled separately Operation *op = cvt->getOperand(0).getDefiningOp(); if (!op) return mlir::failure(); if (isa(op)) return mlir::failure(); // DFS through all operands // auto filter = [](Operation *op) { // return !isa(op); // }; SmallVector postOrderOps; getReachableNotThroughMemOp({cvt->getOperand(0)}, postOrderOps); if (postOrderOps.empty()) return mlir::failure(); // We convert cvt(op(arg_0, arg_1, ..., arg_n)) // into op(cvt_0(arg_0), cvt_1(arg_1), ..., cvt_n(arg_n)) BlockAndValueMapping mapping; for (Value argI : op->getOperands()) { // Compute new argument types auto oldArgType = argI.getType().dyn_cast(); if (!oldArgType) continue; auto newEncoding = invertEncoding(cvt->getResultTypes()[0], op); auto newArgType = RankedTensorType::get( oldArgType.getShape(), oldArgType.getElementType(), newEncoding); // Create new argument auto cvtI = rewriter.create( op->getLoc(), newArgType, argI); cvtI->moveBefore(op); mapping.map(argI, cvtI); } Operation *newOp = rewriter.clone(*op, mapping); newOp->getResult(0).setType(cvt->getResult(0).getType()); rewriter.replaceOp(cvt, newOp->getResults()); return mlir::success(); } }; // ----------------------------------------------------------------------------- // // ----------------------------------------------------------------------------- // This modifies the loop in-place bool tryLegalizeOp(Operation *op, DenseSet toPreserve, mlir::PatternRewriter &rewriter) { auto targetType = toPreserve.begin()->getType().cast(); auto newType = [&](RankedTensorType origType) { return RankedTensorType::get(origType.getShape(), origType.getElementType(), targetType.getEncoding()); }; bool hasSameTypes = op->getDialect()->getNamespace() == "arith" || isa(op); if (hasSameTypes) { // replace argument types for (auto arg : llvm::enumerate(op->getOperands())) { auto argType = arg.value().getType().dyn_cast(); if (toPreserve.count(arg.value()) || !argType) continue; auto newArg = rewriter.create( rewriter.getUnknownLoc(), newType(argType), arg.value()); newArg->moveBefore(op); op->setOperand(arg.index(), newArg); } // replace result types if (!isa(op)) op->getResult(0).setType(op->getOperand(0).getType()); return true; } // i return false; } std::pair, scf::ForOp> tryConvertIterArg(scf::ForOp &forOp, mlir::PatternRewriter &rewriter, size_t i, Type newType) { auto newEncoding = newType.cast().getEncoding(); auto ctx = forOp.getContext(); auto isInLoop = [&](Operation *op) { return op->getParentOp() == forOp; }; // Rewrite init argument Type origType = forOp.getInitArgs()[i].getType(); SmallVector newInitArgs = forOp.getInitArgs(); newInitArgs[i] = rewriter.create( newInitArgs[i].getLoc(), newType, newInitArgs[i]); // Clone for loop scf::ForOp newForOp = rewriter.create( forOp.getLoc(), forOp.getLowerBound(), forOp.getUpperBound(), forOp.getStep(), newInitArgs); newForOp->moveBefore(forOp); rewriter.setInsertionPointToStart(newForOp.getBody()); BlockAndValueMapping mapping; for (const auto &arg : llvm::enumerate(forOp.getRegionIterArgs())) mapping.map(arg.value(), newForOp.getRegionIterArgs()[arg.index()]); // traverse all ops in the loop for (Operation &op : forOp.getBody()->without_terminator()) { // we clone the op Operation *newOp = rewriter.clone(op, mapping); // if any argument of this op has changed type, then the // new operation is not legal and we should try to // legalize it. DenseSet modifiedTypes; for (Value arg : op.getOperands()) { if (mapping.contains(arg) && mapping.lookup(arg).getType() != arg.getType()) modifiedTypes.insert(mapping.lookup(arg)); } bool shouldTryLegalize = !modifiedTypes.empty(); if (shouldTryLegalize) tryLegalizeOp(newOp, modifiedTypes, rewriter); } // create yield, inserting conversions if necessary auto yieldOp = forOp.getBody()->getTerminator(); SmallVector newYieldArgs; for (Value arg : yieldOp->getOperands()) newYieldArgs.push_back(mapping.lookup(arg)); newYieldArgs[i] = rewriter.create( yieldOp->getLoc(), newType, newYieldArgs[i]); rewriter.create(forOp.getLoc(), newYieldArgs); // replace SmallVector newResults = newForOp->getResults(); newResults[i] = rewriter.create( rewriter.getUnknownLoc(), origType, newForOp->getResult(i)); newResults[i].getDefiningOp()->moveAfter(newForOp); return {newResults, newForOp}; } class MoveArgConvertOutOfLoop : public mlir::RewritePattern { public: MoveArgConvertOutOfLoop(mlir::MLIRContext *context) : mlir::RewritePattern(scf::ForOp::getOperationName(), 1, context) {} mlir::LogicalResult matchAndRewrite(mlir::Operation *op, mlir::PatternRewriter &rewriter) const { auto forOp = cast(op); auto isInLoop = [&](Operation *op) { return op->getParentOp() == forOp; }; auto iterArgs = forOp.getRegionIterArgs(); for (auto iterArg : llvm::enumerate(iterArgs)) { for (auto op : iterArg.value().getUsers()) { auto currOps = mlir::getSlice(op, isInLoop); auto pred = [&](Operation *op) { return isa(op); }; auto isCvt = [&](Operation *op) { return isa(op); }; auto isYield = [&](Operation *op) { return isa(op); }; auto opIt = std::find(currOps.begin(), currOps.end(), op); auto yieldIt = std::find_if(currOps.begin(), currOps.end(), isYield); auto fwdEndIt = std::find_if(opIt, currOps.end(), pred); auto bwdBeginIt = std::find_if(currOps.begin(), opIt, pred); auto fwdCvtIt = std::find_if(opIt, fwdEndIt, isCvt); auto bwdCvtIt = std::find_if(bwdBeginIt, opIt, isCvt); if (fwdCvtIt != fwdEndIt) { auto newFor = tryConvertIterArg(forOp, rewriter, iterArg.index(), (*fwdCvtIt)->getResult(0).getType()); rewriter.replaceOp(forOp, newFor.first); return success(); } } } return failure(); } }; // ----------------------------------------------------------------------------- // // ----------------------------------------------------------------------------- class PushConversionToSink : public mlir::RewritePattern { public: PushConversionToSink(mlir::MLIRContext *context) : mlir::RewritePattern(triton::gpu::ConvertLayoutOp::getOperationName(), 2, context) {} mlir::LogicalResult matchAndRewrite(mlir::Operation *_cvtOp, mlir::PatternRewriter &rewriter) const override { auto cvt = cast(_cvtOp); auto forOp = dyn_cast(cvt->getParentOp()); if (!forOp) return mlir::failure(); auto yieldOp = cast(forOp.getBody()->getTerminator()); auto isInLoop = [&](Operation *op) { return op->getParentOp() == forOp; }; SetVector cvtSlices; auto filter = [&](Operation *op) { return isInLoop(op) && !isa(op) && !isa(op) && !isa(op) && !isa(op); }; mlir::getForwardSlice(cvt.getResult(), &cvtSlices, filter); if (cvtSlices.empty()) return failure(); // if other operands are in the loop // then we don't touch anything Operation *op = cvtSlices.front(); for (Value _arg : op->getOperands()) { Operation *arg = _arg.getDefiningOp(); if (arg && isInLoop(arg) && (arg != cvt)) return failure(); } // otherwise, we push the conversion forward // since we'll be able to move it out of // the loop once it reaches the yield op // op(cvt(arg_0), arg_1, ..., arg_n) // -> cvt(op(arg_0, cvt(arg_1), ..., cvt(arg_n))) BlockAndValueMapping mapping; for (Value arg : op->getOperands()) { if (arg.getDefiningOp() == cvt) mapping.map(arg, cvt.getOperand()); else { auto cvtI = rewriter.create( arg.getLoc(), cvt.getOperand().getType(), arg); mapping.map(arg, cvtI); } } Operation *newOp = rewriter.clone(*op, mapping); newOp->getResult(0).setType(cvt.getOperand().getType()); auto newCvt = rewriter.create( newOp->getLoc(), cvt.getResult().getType(), newOp->getResult(0)); rewriter.replaceOp(op, newCvt->getResults()); return success(); } }; // ----------------------------------------------------------------------------- // // ----------------------------------------------------------------------------- class BlockedToMMA : public mlir::RewritePattern { public: BlockedToMMA(mlir::MLIRContext *context) : mlir::RewritePattern(triton::DotOp::getOperationName(), 2, context) {} mlir::LogicalResult matchAndRewrite(mlir::Operation *op, mlir::PatternRewriter &rewriter) const override { auto dotOp = cast(op); // TODO: Check data-types and SM compatibility auto oldRetType = dotOp.getResult().getType().cast(); if (oldRetType.getEncoding().isa()) return failure(); // TODO: compute warpsPerCTA auto newRetType = RankedTensorType::get( oldRetType.getShape(), oldRetType.getElementType(), triton::gpu::MmaEncodingAttr::get(oldRetType.getContext(), 2, {2, 2})); auto oldAcc = dotOp.getOperand(2); auto newAcc = rewriter.create( oldAcc.getLoc(), newRetType, oldAcc); auto newDot = rewriter.create( dotOp.getLoc(), newRetType, dotOp.getOperand(0), dotOp.getOperand(1), newAcc, dotOp.allowTF32()); rewriter.replaceOpWithNewOp( op, oldRetType, newDot.getResult()); return success(); } }; } // namespace #define GEN_PASS_CLASSES #include "triton/Dialect/TritonGPU/Transforms/Passes.h.inc" class TritonGPUCombineOpsPass : public TritonGPUCombineOpsBase { public: void runOnOperation() override { MLIRContext *context = &getContext(); ModuleOp m = getOperation(); mlir::RewritePatternSet patterns(context); patterns.add(context); patterns.add(context); patterns.add(context); patterns.add(context); patterns.add(context); if (applyPatternsAndFoldGreedily(m, std::move(patterns)).failed()) signalPassFailure(); } }; std::unique_ptr mlir::createTritonGPUCombineOpsPass() { return std::make_unique(); }