// RUN: triton-opt %s -split-input-file --mlir-disable-threading -test-print-allocation 2>&1 | FileCheck %s #AL = #triton_gpu.blocked<{sizePerThread = [1, 4], threadsPerWarp = [4, 8], warpsPerCTA = [4, 1], order = [1, 0]}> #BL = #triton_gpu.blocked<{sizePerThread = [1, 4], threadsPerWarp = [1, 32], warpsPerCTA = [4, 1], order = [1, 0]}> #A = #triton_gpu.shared<{vec = 2, perPhase = 2, maxPhase = 4, order = [1, 0]}> #B = #triton_gpu.shared<{vec = 2, perPhase = 2, maxPhase = 4, order = [1, 0]}> #C = #triton_gpu.mma<{version = 2, warpsPerCTA = [4, 1]}> // CHECK-LABEL: matmul_loop func @matmul_loop(%lb : index, %ub : index, %step : index, %A : !tt.ptr, %B : !tt.ptr) { %a_ptr_init = tt.broadcast %A : (!tt.ptr) -> tensor<128x32x!tt.ptr, #AL> %b_ptr_init = tt.broadcast %B : (!tt.ptr) -> tensor<32x128x!tt.ptr, #BL> %a_mask = arith.constant dense : tensor<128x32xi1, #AL> %a_other = arith.constant dense<0.00e+00> : tensor<128x32xf16, #AL> %b_mask = arith.constant dense : tensor<32x128xi1, #BL> %b_other = arith.constant dense<0.00e+00> : tensor<32x128xf16, #BL> %c_init = arith.constant dense<0.00e+00> : tensor<128x128xf32, #C> %a_off = arith.constant dense<4> : tensor<128x32xi32, #AL> %b_off = arith.constant dense<4> : tensor<32x128xi32, #BL> scf.for %iv = %lb to %ub step %step iter_args(%a_ptr = %a_ptr_init, %b_ptr = %b_ptr_init, %prev_c = %c_init) -> (tensor<128x32x!tt.ptr, #AL>, tensor<32x128x!tt.ptr, #BL>, tensor<128x128xf32, #C>) { %a_ = tt.load %a_ptr, %a_mask, %a_other {cache = 1 : i32, evict = 1 : i32, isOtherUnspecified = false, isVolatile = false} : tensor<128x32xf16, #AL> // CHECK: offset = 0, size = 8192 %a = triton_gpu.convert_layout %a_ : (tensor<128x32xf16, #AL>) -> tensor<128x32xf16, #A> %b_ = tt.load %b_ptr, %b_mask, %b_other {cache = 1 : i32, evict = 1 : i32, isOtherUnspecified = false, isVolatile = false} : tensor<32x128xf16, #BL> // CHECK-NEXT: offset = 8192, size = 8192 %b = triton_gpu.convert_layout %b_ : (tensor<32x128xf16, #BL>) -> tensor<32x128xf16, #B> %c = tt.dot %a, %b, %prev_c {allowTF32 = true} : tensor<128x32xf16, #A> * tensor<32x128xf16, #B> -> tensor<128x128xf32, #C> %next_a_ptr = tt.getelementptr %a_ptr, %a_off : tensor<128x32x!tt.ptr, #AL> %next_b_ptr = tt.getelementptr %b_ptr, %b_off : tensor<32x128x!tt.ptr, #BL> scf.yield %next_a_ptr, %next_b_ptr, %c : tensor<128x32x!tt.ptr, #AL>, tensor<32x128x!tt.ptr, #BL>, tensor<128x128xf32, #C> } return // CHECK-NEXT: size = 16384 } // Shared memory is available after a tensor's liveness range ends // CHECK-LABEL: reusable func @reusable(%A : !tt.ptr) { %cst1 = arith.constant dense : tensor<128x32xi1, #AL> %cst2 = arith.constant dense<0.000000e+00> : tensor<128x32xf16, #AL> %cst3 = arith.constant dense : tensor<32x128xi1, #AL> %cst4 = arith.constant dense<0.000000e+00> : tensor<32x128xf16, #AL> %c_init = arith.constant dense<0.00e+00> : tensor<128x128xf32, #C> %a_ptr = tt.broadcast %A : (!tt.ptr) -> tensor<128x32x!tt.ptr, #AL> %b_ptr = tt.broadcast %A : (!tt.ptr) -> tensor<32x128x!tt.ptr, #AL> %a1_ = tt.load %a_ptr, %cst1, %cst2 {cache = 1 : i32, evict = 1 : i32, isOtherUnspecified = false, isVolatile = false} : tensor<128x32xf16, #AL> // CHECK: offset = 0, size = 8192 %a1 = triton_gpu.convert_layout %a1_ : (tensor<128x32xf16, #AL>) -> tensor<128x32xf16, #A> %a2_ = tt.load %b_ptr, %cst3, %cst4 {cache = 1 : i32, evict = 1 : i32, isOtherUnspecified = false, isVolatile = false} : tensor<32x128xf16, #AL> // CHECK-NEXT: offset = 8192, size = 8192 %a2 = triton_gpu.convert_layout %a2_ : (tensor<32x128xf16, #AL>) -> tensor<32x128xf16, #A> %a3_ = tt.load %a_ptr, %cst1, %cst2 {cache = 1 : i32, evict = 1 : i32, isOtherUnspecified = false, isVolatile = false} : tensor<128x32xf16, #AL> // CHECK-NEXT: offset = 16384, size = 8192 %a3 = triton_gpu.convert_layout %a3_ : (tensor<128x32xf16, #AL>) -> tensor<128x32xf16, #A> %c = tt.dot %a1, %a2, %c_init {allowTF32 = true} : tensor<128x32xf16, #A> * tensor<32x128xf16, #B> -> tensor<128x128xf32, #C> %a4_ = tt.load %b_ptr, %cst3, %cst4 {cache = 1 : i32, evict = 1 : i32, isOtherUnspecified = false, isVolatile = false} : tensor<32x128xf16, #AL> // CHECK-NEXT: offset = 0, size = 8192 %a4 = triton_gpu.convert_layout %a4_ : (tensor<32x128xf16, #AL>) -> tensor<32x128xf16, #A> %c1 = tt.dot %a3, %a4, %c {allowTF32 = true} : tensor<128x32xf16, #A> * tensor<32x128xf16, #B> -> tensor<128x128xf32, #C> return // CHECK-NEXT: size = 24576 } // A tensor's shared memory offset is larger than it needs to accommodate further tensors // %cst0->%c // %cst1->%cst4 // %cst3->%g->%h->%i // CHECK-LABEL: preallocate func @preallocate(%A : !tt.ptr) { // CHECK: offset = 0, size = 512 %cst0 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A> // CHECK-NEXT: offset = 1024, size = 512 %cst1 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A> // CHECK-NEXT: offset = 1536, size = 512 %cst2 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A> // CHECK-NEXT: offset = 2048, size = 1024 %a = tt.cat %cst0, %cst1 {axis = 0} : (tensor<16x16xf16, #A>, tensor<16x16xf16, #A>) -> tensor<32x16xf16, #A> // CHECK-NEXT: offset = 3072, size = 1024 %b = tt.cat %cst0, %cst2 {axis = 0} : (tensor<16x16xf16, #A>, tensor<16x16xf16, #A>) -> tensor<32x16xf16, #A> // CHECK-NEXT: offset = 0, size = 1024 %c = tt.cat %cst1, %cst2 {axis = 0} : (tensor<16x16xf16, #A>, tensor<16x16xf16, #A>) -> tensor<32x16xf16, #A> // CHECK-NEXT: offset = 1024, size = 1024 %cst4 = arith.constant dense<0.000000e+00> : tensor<32x16xf16, #A> // CHECK-NEXT: offset = 6144, size = 2048 %e = tt.cat %a, %cst4 {axis = 0} : (tensor<32x16xf16, #A>, tensor<32x16xf16, #A>) -> tensor<64x16xf16, #A> // CHECK-NEXT: offset = 8192, size = 2048 %d = tt.cat %b, %cst4 {axis = 0} : (tensor<32x16xf16, #A>, tensor<32x16xf16, #A>) -> tensor<64x16xf16, #A> // CHECK-NEXT: offset = 10240, size = 2048 %f = tt.cat %c, %cst4 {axis = 0} : (tensor<32x16xf16, #A>, tensor<32x16xf16, #A>) -> tensor<64x16xf16, #A> // CHECK-NEXT: offset = 0, size = 2048 %cst5 = arith.constant dense<0.000000e+00> : tensor<64x16xf16, #A> // CHECK-NEXT: offset = 2048, size = 4096 %g = tt.cat %e, %cst5 {axis = 0} : (tensor<64x16xf16, #A>, tensor<64x16xf16, #A>) -> tensor<128x16xf16, #A> // CHECK-NEXT: offset = 2048, size = 4096 %h = tt.cat %d, %cst5 {axis = 0} : (tensor<64x16xf16, #A>, tensor<64x16xf16, #A>) -> tensor<128x16xf16, #A> // CHECK-NEXT: offset = 2048, size = 4096 %i = tt.cat %f, %cst5 {axis = 0} : (tensor<64x16xf16, #A>, tensor<64x16xf16, #A>) -> tensor<128x16xf16, #A> return // CHECK-NEXT: size = 12288 } // Unused tensors are immediately released // CHECK-LABEL: unused func @unused(%A : !tt.ptr) { // CHECK: offset = 0, size = 1024 %cst0 = arith.constant dense<0.000000e+00> : tensor<32x16xf16, #A> // CHECK-NEXT: offset = 0, size = 512 %cst1 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A> // CHECK-NEXT: offset = 512, size = 512 %cst2 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A> // CHECK-NEXT: offset = 1024, size = 1024 %a = tt.cat %cst1, %cst2 {axis = 0} : (tensor<16x16xf16, #A>, tensor<16x16xf16, #A>) -> tensor<32x16xf16, #A> return // CHECK: size = 2048 } // cst0 is alive through the entire function, it cannot be released before the end of the function // CHECK-LABEL: longlive func @longlive(%A : !tt.ptr) { // CHECK: offset = 0, size = 512 %cst0 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A> // CHECK-NEXT: offset = 512, size = 512 %cst1 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A> // CHECK-NEXT: offset = 1024, size = 512 %cst2 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A> // CHECK-NEXT: offset = 1536, size = 1024 %a = tt.cat %cst1, %cst2 {axis = 0} : (tensor<16x16xf16, #A>, tensor<16x16xf16, #A>) -> tensor<32x16xf16, #A> // CHECK-NEXT: offset = 512, size = 512 %cst3 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A> // CHECK-NEXT: offset = 1024, size = 512 %cst4 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A> // CHECK-NEXT: offset = 1536, size = 1024 %b = tt.cat %cst3, %cst4 {axis = 0} : (tensor<16x16xf16, #A>, tensor<16x16xf16, #A>) -> tensor<32x16xf16, #A> // CHECK-NEXT: offset = 1536, size = 512 %cst5 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A> // CHECK-NEXT: offset = 1536, size = 512 %cst6 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A> // CHECK-NEXT: offset = 1536, size = 1024 %c = tt.cat %cst3, %cst4 {axis = 0} : (tensor<16x16xf16, #A>, tensor<16x16xf16, #A>) -> tensor<32x16xf16, #A> // CHECK-NEXT: offset = 512, size = 1024 %d = tt.cat %cst0, %cst0 {axis = 0} : (tensor<16x16xf16, #A>, tensor<16x16xf16, #A>) -> tensor<32x16xf16, #A> return // CHECK-NEXT: size = 2560 } // CHECK-LABEL: scratch func @scratch() { // CHECK: offset = 0, size = 512 %cst0 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A> // CHECK-NEXT: offset = 1056, size = 1024 %a = tt.cat %cst0, %cst0 {axis = 0} : (tensor<16x16xf16, #A>, tensor<16x16xf16, #A>) -> tensor<32x16xf16, #A> // CHECK-NEXT: scratch offset = 32, size = 1024 // CHECK-NEXT: offset = 0, size = 32 %b = tt.reduce %a {redOp = 1 : i32, axis = 0 : i32} : tensor<32x16xf16, #A> -> tensor<16xf16, #A> return // CHECK-NEXT: size = 2080 } // B0 -> (B1) -> B0 // Memory used by B1 can be reused by B0. // CHECK-LABEL: multi_blocks_reuse func @multi_blocks_reuse(%i1 : i1) { // CHECK: offset = 0, size = 512 %cst0 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A> // CHECK-NEXT: offset = 512, size = 512 %cst1 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A> scf.if %i1 { // CHECK-NEXT: offset = 1024, size = 1024 %a = tt.cat %cst0, %cst1 {axis = 0} : (tensor<16x16xf16, #A>, tensor<16x16xf16, #A>) -> tensor<32x16xf16, #A> // CHECK-NEXT: offset = 1024, size = 1024 %b = tt.cat %cst0, %cst1 {axis = 0} : (tensor<16x16xf16, #A>, tensor<16x16xf16, #A>) -> tensor<32x16xf16, #A> } // CHECK-NEXT: offset = 0, size = 512 %cst2 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A> // CHECK-NEXT: offset = 512, size = 512 %cst3 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A> // CHECK-NEXT: offset = 1024, size = 1024 %a = tt.cat %cst2, %cst3 {axis = 0} : (tensor<16x16xf16, #A>, tensor<16x16xf16, #A>) -> tensor<32x16xf16, #A> return // CHECK-NEXT: size = 2048 } // B0 -> (B1) -> (B2) -> B0 // Memory used by B0 cannot be reused by B1 or B2. // CHECK-LABEL: multi_blocks_noreuse func @multi_blocks_noreuse(%i1 : i1) { // CHECK: offset = 0, size = 512 %cst0 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A> // CHECK-NEXT: offset = 512, size = 512 %cst1 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A> scf.if %i1 { // CHECK-NEXT: offset = 1024, size = 1024 %a = tt.cat %cst0, %cst1 {axis = 0} : (tensor<16x16xf16, #A>, tensor<16x16xf16, #A>) -> tensor<32x16xf16, #A> // CHECK-NEXT: offset = 1024, size = 1024 %b = tt.cat %cst0, %cst1 {axis = 0} : (tensor<16x16xf16, #A>, tensor<16x16xf16, #A>) -> tensor<32x16xf16, #A> } else { // CHECK-NEXT: offset = 1024, size = 512 %cst2 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A> // CHECK-NEXT: offset = 1536, size = 512 %cst3 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A> // CHECK-NEXT: offset = 2048, size = 1024 %a = tt.cat %cst2, %cst3 {axis = 0} : (tensor<16x16xf16, #A>, tensor<16x16xf16, #A>) -> tensor<32x16xf16, #A> } // CHECK-NEXT: offset = 1024, size = 1024 %a = tt.cat %cst0, %cst1 {axis = 0} : (tensor<16x16xf16, #A>, tensor<16x16xf16, #A>) -> tensor<32x16xf16, #A> return // CHECK-NEXT: size = 3072 }