.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "getting-started/tutorials/05-layer-norm.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_getting-started_tutorials_05-layer-norm.py: Layer Normalization ==================== .. GENERATED FROM PYTHON SOURCE LINES 5-262 .. image:: /getting-started/tutorials/images/sphx_glr_05-layer-norm_001.png :alt: 05 layer norm :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none layer-norm-backward: N Triton Torch Apex 0 1024.0 361.411758 97.912354 303.407414 1 1536.0 409.599994 134.540150 341.333333 2 2048.0 491.520012 161.154101 334.367350 3 2560.0 461.954908 181.238943 330.322572 4 3072.0 519.211251 192.501302 323.368415 5 3584.0 558.545477 208.271186 311.652167 6 4096.0 568.231237 220.907859 298.796351 7 4608.0 502.690905 232.825259 287.251954 8 5120.0 527.381977 242.366855 284.444444 9 5632.0 542.843364 243.107920 289.438969 10 6144.0 546.133354 248.661056 286.322318 11 6656.0 527.207907 256.000009 285.767438 12 7168.0 503.017523 259.867079 284.821192 13 7680.0 483.779539 262.938666 280.121579 14 8192.0 463.698115 266.587109 284.526763 15 8704.0 414.476194 267.815384 284.599455 16 9216.0 426.996150 271.391419 287.999990 17 9728.0 437.213490 280.278512 290.027323 18 10240.0 446.025405 286.433562 290.496460 19 10752.0 429.364408 247.172406 290.594591 20 11264.0 427.071098 245.313973 286.980888 21 11776.0 421.198220 249.667843 289.277383 22 12288.0 416.542386 254.893699 294.617366 23 12800.0 411.244989 253.884294 289.811310 24 13312.0 409.075539 252.959629 290.443638 25 13824.0 405.098897 257.390218 292.056329 26 14336.0 395.021816 254.862216 287.198654 27 14848.0 386.498925 257.852379 289.717061 28 15360.0 380.433442 257.970599 287.550706 29 15872.0 370.552519 261.626369 290.120338 | .. code-block:: default import torch import triton import triton.language as tl try: # This is https://github.com/NVIDIA/apex, NOT the apex on PyPi, so it # should not be added to extras_require in setup.py. import apex HAS_APEX = True except ModuleNotFoundError: HAS_APEX = False # Forward Pass @triton.jit def _layer_norm_fwd_fused(X, Y, W, B, M, V, stride, N, eps, BLOCK_SIZE: tl.constexpr): # position of elements processed by this program row = tl.program_id(0) cols = tl.arange(0, BLOCK_SIZE) mask = cols < N # offset data pointers to start at the row of interest X += row * stride Y += row * stride # load data and cast to float32 x = tl.load(X + cols, mask=mask, other=0).to(tl.float32) # compute mean mean = tl.sum(x, axis=0) / N # compute std xmean = tl.where(mask, x - mean, 0.) var = tl.sum(xmean * xmean, axis=0) / N rstd = 1 / tl.sqrt(var + eps) xhat = xmean * rstd # write-back mean/rstd tl.store(M + row, mean) tl.store(V + row, rstd) # multiply by weight and add bias w = tl.load(W + cols, mask=mask) b = tl.load(B + cols, mask=mask) y = xhat * w + b # write-back tl.store(Y + cols, y, mask=mask) # Backward pass (DX + partial DW + partial DB) @triton.jit def _layer_norm_bwd_dx_fused(DX, DY, DW, DB, X, W, B, M, V, Lock, stride, N, eps, GROUP_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr): # position of elements processed by this program row = tl.program_id(0) cols = tl.arange(0, BLOCK_SIZE_N) mask = cols < N # offset data pointers to start at the row of interest X += row * stride DY += row * stride DX += row * stride # offset locks and weight/bias gradient pointer # each kernel instance accumulates partial sums for # DW and DB into one of GROUP_SIZE_M independent buffers # these buffers stay in the L2, which allow this kernel # to be fast lock_id = row % GROUP_SIZE_M Lock += lock_id Count = Lock + GROUP_SIZE_M DW = DW + lock_id * N + cols DB = DB + lock_id * N + cols # load data to SRAM x = tl.load(X + cols, mask=mask, other=0).to(tl.float32) dy = tl.load(DY + cols, mask=mask, other=0).to(tl.float32) w = tl.load(W + cols, mask=mask).to(tl.float32) mean = tl.load(M + row) rstd = tl.load(V + row) # compute dx xhat = (x - mean) * rstd wdy = w * dy xhat = tl.where(mask, xhat, 0.) wdy = tl.where(mask, wdy, 0.) mean1 = tl.sum(xhat * wdy, axis=0) / N mean2 = tl.sum(wdy, axis=0) / N dx = (wdy - (xhat * mean1 + mean2)) * rstd # write-back dx tl.store(DX + cols, dx, mask=mask) # accumulate partial sums for dw/db partial_dw = (dy * xhat).to(w.dtype) partial_db = (dy).to(w.dtype) while tl.atomic_cas(Lock, 0, 1) == 1: pass count = tl.load(Count) # first store doesn't accumulate if count == 0: tl.atomic_xchg(Count, 1) else: partial_dw += tl.load(DW, mask=mask) partial_db += tl.load(DB, mask=mask) tl.store(DW, partial_dw, mask=mask) tl.store(DB, partial_db, mask=mask) # release lock tl.atomic_xchg(Lock, 0) # Backward pass (total DW + total DB) @triton.jit def _layer_norm_bwd_dwdb(DW, DB, FINAL_DW, FINAL_DB, M, N, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr): pid = tl.program_id(0) cols = pid * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) dw = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) db = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) for i in range(0, M, BLOCK_SIZE_M): rows = i + tl.arange(0, BLOCK_SIZE_M) mask = (rows[:, None] < M) & (cols[None, :] < N) offs = rows[:, None] * N + cols[None, :] dw += tl.load(DW + offs, mask=mask, other=0.) db += tl.load(DB + offs, mask=mask, other=0.) sum_dw = tl.sum(dw, axis=0) sum_db = tl.sum(db, axis=0) tl.store(FINAL_DW + cols, sum_dw, mask=cols < N) tl.store(FINAL_DB + cols, sum_db, mask=cols < N) class LayerNorm(torch.autograd.Function): @staticmethod def forward(ctx, x, normalized_shape, weight, bias, eps): # allocate output y = torch.empty_like(x) # reshape input data into 2D tensor x_arg = x.reshape(-1, x.shape[-1]) M, N = x_arg.shape mean = torch.empty((M, ), dtype=torch.float32, device='cuda') rstd = torch.empty((M, ), dtype=torch.float32, device='cuda') # Less than 64KB per feature: enqueue fused kernel MAX_FUSED_SIZE = 65536 // x.element_size() BLOCK_SIZE = min(MAX_FUSED_SIZE, triton.next_power_of_2(N)) if N > BLOCK_SIZE: raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.") # heuristics for number of warps num_warps = min(max(BLOCK_SIZE // 256, 1), 8) # enqueue kernel _layer_norm_fwd_fused[(M,)](x_arg, y, weight, bias, mean, rstd, x_arg.stride(0), N, eps, BLOCK_SIZE=BLOCK_SIZE, num_warps=num_warps) ctx.save_for_backward(x, weight, bias, mean, rstd) ctx.BLOCK_SIZE = BLOCK_SIZE ctx.num_warps = num_warps ctx.eps = eps return y @staticmethod def backward(ctx, dy): x, w, b, m, v = ctx.saved_tensors # heuristics for amount of parallel reduction stream for DG/DB N = w.shape[0] GROUP_SIZE_M = 64 if N <= 8192: GROUP_SIZE_M = 96 if N <= 4096: GROUP_SIZE_M = 128 if N <= 1024: GROUP_SIZE_M = 256 # allocate output locks = torch.zeros(2 * GROUP_SIZE_M, dtype=torch.int32, device='cuda') _dw = torch.empty((GROUP_SIZE_M, w.shape[0]), dtype=x.dtype, device=w.device) _db = torch.empty((GROUP_SIZE_M, w.shape[0]), dtype=x.dtype, device=w.device) dw = torch.empty((w.shape[0],), dtype=w.dtype, device=w.device) db = torch.empty((w.shape[0],), dtype=w.dtype, device=w.device) dx = torch.empty_like(dy) # enqueue kernel using forward pass heuristics # also compute partial sums for DW and DB x_arg = x.reshape(-1, x.shape[-1]) M, N = x_arg.shape _layer_norm_bwd_dx_fused[(M,)](dx, dy, _dw, _db, x, w, b, m, v, locks, x_arg.stride(0), N, ctx.eps, BLOCK_SIZE_N=ctx.BLOCK_SIZE, GROUP_SIZE_M=GROUP_SIZE_M, num_warps=ctx.num_warps) grid = lambda meta: [triton.cdiv(N, meta['BLOCK_SIZE_N'])] # accumulate partial sums in separate kernel _layer_norm_bwd_dwdb[grid](_dw, _db, dw, db, GROUP_SIZE_M, N, BLOCK_SIZE_M=32, BLOCK_SIZE_N=128) return dx, None, dw, db, None layer_norm = LayerNorm.apply def test_layer_norm(M, N, dtype, eps=1e-5, device='cuda'): # create data x_shape = (M, N) w_shape = (x_shape[-1], ) weight = torch.rand(w_shape, dtype=dtype, device='cuda', requires_grad=True) bias = torch.rand(w_shape, dtype=dtype, device='cuda', requires_grad=True) x = -2.3 + 0.5 * torch.randn(x_shape, dtype=dtype, device='cuda') dy = .1 * torch.randn_like(x) x.requires_grad_(True) # forward pass y_tri = layer_norm(x, w_shape, weight, bias, eps) y_ref = torch.nn.functional.layer_norm(x, w_shape, weight, bias, eps).to(dtype) # backward pass (triton) y_tri.backward(dy, retain_graph=True) dx_tri, dw_tri, db_tri = [_.grad.clone() for _ in [x, weight, bias]] x.grad, weight.grad, bias.grad = None, None, None # backward pass (torch) y_ref.backward(dy, retain_graph=True) dx_ref, dw_ref, db_ref = [_.grad.clone() for _ in [x, weight, bias]] # compare triton.testing.assert_almost_equal(y_tri, y_ref) triton.testing.assert_almost_equal(dx_tri, dx_ref) triton.testing.assert_almost_equal(db_tri, db_ref, decimal=1) triton.testing.assert_almost_equal(dw_tri, dw_ref, decimal=1) @triton.testing.perf_report( triton.testing.Benchmark( x_names=['N'], x_vals=[512 * i for i in range(2, 32)], line_arg='provider', line_vals=['triton', 'torch'] + (['apex'] if HAS_APEX else []), line_names=['Triton', 'Torch'] + (['Apex'] if HAS_APEX else []), styles=[('blue', '-'), ('green', '-'), ('orange', '-')], ylabel='GB/s', plot_name='layer-norm-backward', args={'M': 4096, 'dtype': torch.float16, 'mode': 'backward'} ) ) def bench_layer_norm(M, N, dtype, provider, mode='backward', eps=1e-5, device='cuda'): # create data x_shape = (M, N) w_shape = (x_shape[-1], ) weight = torch.rand(w_shape, dtype=dtype, device='cuda', requires_grad=True) bias = torch.rand(w_shape, dtype=dtype, device='cuda', requires_grad=True) x = -2.3 + 0.5 * torch.randn(x_shape, dtype=dtype, device='cuda') dy = .1 * torch.randn_like(x) x.requires_grad_(True) # utility functions if provider == 'triton': y_fwd = lambda: layer_norm(x, w_shape, weight, bias, eps) if provider == 'torch': y_fwd = lambda: torch.nn.functional.layer_norm(x, w_shape, weight, bias, eps) if provider == 'apex': apex_layer_norm = apex.normalization.FusedLayerNorm(w_shape).to(x.device).to(x.dtype) y_fwd = lambda: apex_layer_norm(x) # forward pass if mode == 'forward': gbps = lambda ms: 2 * x.numel() * x.element_size() / ms * 1e-6 ms, min_ms, max_ms = triton.testing.do_bench(y_fwd, rep=500) # backward pass if mode == 'backward': gbps = lambda ms: 3 * x.numel() * x.element_size() / ms * 1e-6 y = y_fwd() ms, min_ms, max_ms = triton.testing.do_bench(lambda: y.backward(dy, retain_graph=True), grad_to_none=[x], rep=500) return gbps(ms), gbps(max_ms), gbps(min_ms) bench_layer_norm.run(save_path='.', print_data=True) .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 2 minutes 12.505 seconds) .. _sphx_glr_download_getting-started_tutorials_05-layer-norm.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: 05-layer-norm.py <05-layer-norm.py>` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: 05-layer-norm.ipynb <05-layer-norm.ipynb>` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_