import pytest import triton import triton.language as tl import torch def test_if(): ref_ir = """module { func @only_if(%arg0: i32, %arg1: i32, %arg2: i32) { %cst = arith.constant -1.000000e+00 : f32 %0 = arith.cmpi sgt, %arg2, %arg0 : i32 %1 = scf.if %0 -> (f32) { %cst_0 = arith.constant 0.000000e+00 : f32 scf.yield %cst_0 : f32 } else { scf.yield %cst : f32 } %2 = arith.addf %1, %1 : f32 return } } """ @triton.jit def only_if(lb, ub, value): a = -1.0 if value > lb: a = 0.0 c = a + a mod, _ = only_if.compile_to_ttir(2, 3, 4, grid=(1,)) generated_ir = mod.str() assert mod.verify() assert ref_ir == generated_ir def test_if_else(): ref_ir = """module { func @if_else(%arg0: i32, %arg1: i32, %arg2: i32) { %0 = arith.cmpi sgt, %arg2, %arg0 : i32 %1 = scf.if %0 -> (f32) { %cst = arith.constant 0.000000e+00 : f32 scf.yield %cst : f32 } else { %cst = arith.constant 1.000000e+00 : f32 scf.yield %cst : f32 } %2 = arith.addf %1, %1 : f32 return } } """ @triton.jit def if_else(lb, ub, value): if value > lb: a = 0.0 else: a = 1.0 c = a + a mod, _ = if_else.compile_to_ttir(2, 3, 4, grid=(1,)) generated_ir = mod.str() assert mod.verify() assert ref_ir == generated_ir def test_for(): ref_ir = """module { func @for_loop(%arg0: i32) { %cst = arith.constant 1.000000e+00 : f32 %c0_i32 = arith.constant 0 : i32 %c1_i32 = arith.constant 1 : i32 %0 = arith.index_cast %c0_i32 : i32 to index %1 = arith.index_cast %arg0 : i32 to index %2 = arith.index_cast %c1_i32 : i32 to index %3 = scf.for %arg1 = %0 to %1 step %2 iter_args(%arg2 = %cst) -> (f32) { %cst_0 = arith.constant 1.000000e+00 : f32 %4 = arith.addf %arg2, %cst_0 : f32 scf.yield %4 : f32 } return } } """ @triton.jit def for_loop(K): a = 1.0 for k in range(0, K): a += 1.0 mod, _ = for_loop.compile_to_ttir(2, grid=(1,)) generated_ir = mod.str() assert mod.verify() assert ref_ir == generated_ir def test_while(): ref_ir = """module { func @generic_while(%arg0: i32) { %c-1_i32 = arith.constant -1 : i32 %0 = scf.while (%arg1 = %c-1_i32) : (i32) -> i32 { %c0_i32 = arith.constant 0 : i32 %1 = arith.cmpi sle, %arg1, %c0_i32 : i32 scf.condition(%1) %arg1 : i32 } do { ^bb0(%arg1: i32): %c1_i32 = arith.constant 1 : i32 %1 = arith.addi %arg1, %c1_i32 : i32 scf.yield %1 : i32 } return } } """ @triton.jit def generic_while(x): c = -1 while c <= 0: c += 1 mod, _ = generic_while.compile_to_ttir(2, grid=(1,)) generated_ir = mod.str() assert mod.verify() assert ref_ir == generated_ir def test_nested(): ref_ir = """module { func @nested_cf(%arg0: i32, %arg1: i32, %arg2: i32, %arg3: i32) { %cst = arith.constant 0.000000e+00 : f32 %c0_i32 = arith.constant 0 : i32 %c1_i32 = arith.constant 1 : i32 %0 = arith.index_cast %c0_i32 : i32 to index %1 = arith.index_cast %arg0 : i32 to index %2 = arith.index_cast %c1_i32 : i32 to index %3 = scf.for %arg4 = %0 to %1 step %2 iter_args(%arg5 = %cst) -> (f32) { %5 = arith.cmpi slt, %arg1, %arg2 : i32 %6 = scf.if %5 -> (f32) { %c0_i32_1 = arith.constant 0 : i32 %c1_i32_2 = arith.constant 1 : i32 %7 = arith.index_cast %c0_i32_1 : i32 to index %8 = arith.index_cast %arg3 : i32 to index %9 = arith.index_cast %c1_i32_2 : i32 to index %10 = scf.for %arg6 = %7 to %8 step %9 iter_args(%arg7 = %arg5) -> (f32) { %cst_3 = arith.constant 2.000000e+00 : f32 %11 = arith.addf %arg7, %cst_3 : f32 scf.yield %11 : f32 } scf.yield %10 : f32 } else { scf.yield %arg5 : f32 } scf.yield %6 : f32 } %cst_0 = arith.constant 1.000000e+00 : f32 %4 = arith.subf %3, %cst_0 : f32 return } } """ @triton.jit def nested_cf(X, lb, ub, Z): a = 0.0 for x in range(0, X): if lb < ub: for z in range(0, Z): a += 2.0 a -= 1.0 mod, _ = nested_cf.compile_to_ttir(3, 4, 5, 6, grid=(1,)) generated_ir = mod.str() assert mod.verify() assert ref_ir == generated_ir def test_matmul(): ref_ir = """module { func @matmul_kernel(%arg0: !tt.ptr, %arg1: !tt.ptr, %arg2: !tt.ptr, %arg3: i32, %arg4: i32, %arg5: i32, %arg6: i32, %arg7: i32, %arg8: i32) { %0 = tt.get_program_id {axis = 0 : i32} : i32 %c64_i32 = arith.constant 64 : i32 %1 = arith.addi %arg3, %c64_i32 : i32 %c1_i32 = arith.constant 1 : i32 %2 = arith.subi %1, %c1_i32 : i32 %c64_i32_0 = arith.constant 64 : i32 %3 = arith.divsi %2, %c64_i32_0 : i32 %c64_i32_1 = arith.constant 64 : i32 %4 = arith.addi %arg4, %c64_i32_1 : i32 %c1_i32_2 = arith.constant 1 : i32 %5 = arith.subi %4, %c1_i32_2 : i32 %c64_i32_3 = arith.constant 64 : i32 %6 = arith.divsi %5, %c64_i32_3 : i32 %c8_i32 = arith.constant 8 : i32 %7 = arith.muli %6, %c8_i32 : i32 %8 = arith.divsi %0, %7 : i32 %c8_i32_4 = arith.constant 8 : i32 %9 = arith.muli %8, %c8_i32_4 : i32 %10 = arith.subi %3, %9 : i32 %c8_i32_5 = arith.constant 8 : i32 %11 = arith.cmpi slt, %10, %c8_i32_5 : i32 %c8_i32_6 = arith.constant 8 : i32 %12 = select %11, %10, %c8_i32_6 : i32 %13 = arith.remsi %0, %12 : i32 %14 = arith.addi %9, %13 : i32 %15 = arith.remsi %0, %7 : i32 %16 = arith.divsi %15, %12 : i32 %c64_i32_7 = arith.constant 64 : i32 %17 = arith.muli %14, %c64_i32_7 : i32 %18 = tt.make_range {end = 64 : i32, start = 0 : i32} : tensor<64xi32> %19 = tt.broadcast %17 : (i32) -> tensor<64xi32> %20 = arith.addi %19, %18 : tensor<64xi32> %c64_i32_8 = arith.constant 64 : i32 %21 = arith.muli %16, %c64_i32_8 : i32 %22 = tt.make_range {end = 64 : i32, start = 0 : i32} : tensor<64xi32> %23 = tt.broadcast %21 : (i32) -> tensor<64xi32> %24 = arith.addi %23, %22 : tensor<64xi32> %25 = tt.make_range {end = 32 : i32, start = 0 : i32} : tensor<32xi32> %26 = tt.reshape %20 : (tensor<64xi32>) -> tensor<64x1xi32> %27 = tt.broadcast %arg6 : (i32) -> tensor<64x1xi32> %28 = arith.muli %26, %27 : tensor<64x1xi32> %29 = tt.reshape %25 : (tensor<32xi32>) -> tensor<1x32xi32> %c1_i32_9 = arith.constant 1 : i32 %30 = tt.broadcast %c1_i32_9 : (i32) -> tensor<1x32xi32> %31 = arith.muli %29, %30 : tensor<1x32xi32> %32 = tt.broadcast %28 : (tensor<64x1xi32>) -> tensor<64x32xi32> %33 = tt.broadcast %31 : (tensor<1x32xi32>) -> tensor<64x32xi32> %34 = arith.addi %32, %33 : tensor<64x32xi32> %35 = tt.broadcast %arg0 : (!tt.ptr) -> tensor<64x32x!tt.ptr> %36 = tt.getelementptr %35, %34, : tensor<64x32x!tt.ptr> %37 = tt.reshape %25 : (tensor<32xi32>) -> tensor<32x1xi32> %38 = tt.broadcast %arg7 : (i32) -> tensor<32x1xi32> %39 = arith.muli %37, %38 : tensor<32x1xi32> %40 = tt.reshape %24 : (tensor<64xi32>) -> tensor<1x64xi32> %c1_i32_10 = arith.constant 1 : i32 %41 = tt.broadcast %c1_i32_10 : (i32) -> tensor<1x64xi32> %42 = arith.muli %40, %41 : tensor<1x64xi32> %43 = tt.broadcast %39 : (tensor<32x1xi32>) -> tensor<32x64xi32> %44 = tt.broadcast %42 : (tensor<1x64xi32>) -> tensor<32x64xi32> %45 = arith.addi %43, %44 : tensor<32x64xi32> %46 = tt.broadcast %arg1 : (!tt.ptr) -> tensor<32x64x!tt.ptr> %47 = tt.getelementptr %46, %45, : tensor<32x64x!tt.ptr> %cst = arith.constant 0.000000e+00 : f32 %48 = tt.broadcast %cst : (f32) -> tensor<64x64xf32> %c0_i32 = arith.constant 0 : i32 %c32_i32 = arith.constant 32 : i32 %49 = arith.index_cast %c0_i32 : i32 to index %50 = arith.index_cast %arg5 : i32 to index %51 = arith.index_cast %c32_i32 : i32 to index %52:3 = scf.for %arg9 = %49 to %50 step %51 iter_args(%arg10 = %48, %arg11 = %36, %arg12 = %47) -> (tensor<64x64xf32>, tensor<64x32x!tt.ptr>, tensor<32x64x!tt.ptr>) { %cst_14 = arith.constant dense : tensor<64x32xi1> %cst_15 = arith.constant dense<0.000000e+00> : tensor<64x32xf16> %82 = tt.load %arg11, %cst_14, %cst_15 {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<64x32xf16> %cst_16 = arith.constant dense : tensor<32x64xi1> %cst_17 = arith.constant dense<0.000000e+00> : tensor<32x64xf16> %83 = tt.load %arg12, %cst_16, %cst_17 {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<32x64xf16> %cst_18 = arith.constant 0.000000e+00 : f32 %84 = tt.broadcast %cst_18 : (f32) -> tensor<64x64xf32> %85 = tt.dot %82, %83, %84 {allowTF32 = true} : tensor<64x32xf16> * tensor<32x64xf16> -> tensor<64x64xf32> %86 = arith.addf %arg10, %85 : tensor<64x64xf32> %c32_i32_19 = arith.constant 32 : i32 %87 = tt.broadcast %c32_i32_19 : (i32) -> tensor<64x32xi32> %88 = tt.getelementptr %arg11, %87, : tensor<64x32x!tt.ptr> %c32_i32_20 = arith.constant 32 : i32 %89 = arith.muli %arg7, %c32_i32_20 : i32 %90 = tt.broadcast %89 : (i32) -> tensor<32x64xi32> %91 = tt.getelementptr %arg12, %90, : tensor<32x64x!tt.ptr> scf.yield %86, %88, %91 : tensor<64x64xf32>, tensor<64x32x!tt.ptr>, tensor<32x64x!tt.ptr> } %53 = arith.truncf %52#0 : tensor<64x64xf32> to tensor<64x64xf16> %c64_i32_11 = arith.constant 64 : i32 %54 = arith.muli %14, %c64_i32_11 : i32 %55 = tt.make_range {end = 64 : i32, start = 0 : i32} : tensor<64xi32> %56 = tt.broadcast %54 : (i32) -> tensor<64xi32> %57 = arith.addi %56, %55 : tensor<64xi32> %c64_i32_12 = arith.constant 64 : i32 %58 = arith.muli %16, %c64_i32_12 : i32 %59 = tt.make_range {end = 64 : i32, start = 0 : i32} : tensor<64xi32> %60 = tt.broadcast %58 : (i32) -> tensor<64xi32> %61 = arith.addi %60, %59 : tensor<64xi32> %62 = tt.reshape %57 : (tensor<64xi32>) -> tensor<64x1xi32> %63 = tt.broadcast %arg8 : (i32) -> tensor<64x1xi32> %64 = arith.muli %63, %62 : tensor<64x1xi32> %65 = tt.broadcast %arg2 : (!tt.ptr) -> tensor<64x1x!tt.ptr> %66 = tt.getelementptr %65, %64, : tensor<64x1x!tt.ptr> %67 = tt.reshape %61 : (tensor<64xi32>) -> tensor<1x64xi32> %c1_i32_13 = arith.constant 1 : i32 %68 = tt.broadcast %c1_i32_13 : (i32) -> tensor<1x64xi32> %69 = arith.muli %67, %68 : tensor<1x64xi32> %70 = tt.broadcast %66 : (tensor<64x1x!tt.ptr>) -> tensor<64x64x!tt.ptr> %71 = tt.broadcast %69 : (tensor<1x64xi32>) -> tensor<64x64xi32> %72 = tt.getelementptr %70, %71, : tensor<64x64x!tt.ptr> %73 = tt.reshape %57 : (tensor<64xi32>) -> tensor<64x1xi32> %74 = tt.broadcast %arg3 : (i32) -> tensor<64x1xi32> %75 = arith.cmpi slt, %73, %74 : tensor<64x1xi32> %76 = tt.reshape %61 : (tensor<64xi32>) -> tensor<1x64xi32> %77 = tt.broadcast %arg4 : (i32) -> tensor<1x64xi32> %78 = arith.cmpi slt, %76, %77 : tensor<1x64xi32> %79 = tt.broadcast %75 : (tensor<64x1xi1>) -> tensor<64x64xi1> %80 = tt.broadcast %78 : (tensor<1x64xi1>) -> tensor<64x64xi1> %81 = arith.andi %79, %80 : tensor<64x64xi1> tt.store %72, %53, %81, : tensor<64x64xf16> return } } """ @triton.jit def matmul_kernel( # Pointers to matrices a_ptr, b_ptr, c_ptr, # Matrix dimensions M, N, K, # The stride variables represent how much to increase the ptr by when moving by 1 # element in a particular dimension. E.g. stride_am is how much to increase a_ptr # by to get the element one row down (A has M rows) stride_am, stride_ak, stride_bk, stride_bn, stride_cm, stride_cn, # Meta-parameters BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, GROUP_SIZE_M: tl.constexpr, ): """Kernel for computing the matmul C = A x B. A has shape (M, K), B has shape (K, N) and C has shape (M, N) """ # ----------------------------------------------------------- # Map program ids `pid` to the block of C it should compute. # This is done in a grouped ordering to promote L2 data reuse # See above `L2 Cache Optimizations` section for details pid = tl.program_id(axis=0) num_pid_m = tl.cdiv(M, BLOCK_SIZE_M) num_pid_n = tl.cdiv(N, BLOCK_SIZE_N) num_pid_in_group = GROUP_SIZE_M * num_pid_n group_id = pid // num_pid_in_group first_pid_m = group_id * GROUP_SIZE_M group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M) pid_m = first_pid_m + (pid % group_size_m) pid_n = (pid % num_pid_in_group) // group_size_m # ---------------------------------------------------------- # Create pointers for the first blocks of A and B. # We will advance this pointer as we move in the K direction # and accumulate # a_ptrs is a block of [BLOCK_SIZE_M, BLOCK_SIZE_K] pointers # b_ptrs is a block of [BLOCK_SIZE_K, BLOCK_SIZE_n] pointers # see above `Pointer Arithmetics` section for details offs_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) offs_bn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) offs_k = tl.arange(0, BLOCK_SIZE_K) a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak) b_ptrs = b_ptr + (offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn) # ----------------------------------------------------------- # Iterate to compute a block of the C matrix # We accumulate into a `[BLOCK_SIZE_M, BLOCK_SIZE_N]` block # of fp32 values for higher accuracy. # `accumulator` will be converted back to fp16 after the loop accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) for k in range(0, K, BLOCK_SIZE_K): # Note that for simplicity, we don't apply a mask here. # This means that if K is not a multiple of BLOCK_SIZE_K, # this will access out-of-bounds memory and produce an # error or (worse!) incorrect results. a = tl.load(a_ptrs) b = tl.load(b_ptrs) # We accumulate along the K dimension accumulator += tl.dot(a, b) # Advance the ptrs to the next K block a_ptrs += BLOCK_SIZE_K * stride_ak b_ptrs += BLOCK_SIZE_K * stride_bk c = accumulator.to(tl.float16) # ----------------------------------------------------------- # Write back the block of the output matrix C offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) c_ptrs = c_ptr + stride_cm * offs_cm[:, None] + stride_cn * offs_cn[None, :] c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < N) tl.store(c_ptrs, c, mask=c_mask) a = torch.randn((512, 512), device='cuda', dtype=torch.float16) b = torch.randn((512, 512), device='cuda', dtype=torch.float16) c = torch.empty((512, 512), device='cuda', dtype=torch.float16) mod, ctx = matmul_kernel.compile_to_ttir( a, b, c, 512, 512, 512, a.stride(0), a.stride(1), b.stride(0), b.stride(1), c.stride(0), c.stride(1), 64, 64, 32, 8, grid=(2,) ) verify = mod.verify() assert verify assert ref_ir == mod.str()