import os import tensorflow as tf import numpy as np from time import time data_files_path = tf.resource_loader.get_data_files_path() library_dir = os.path.dirname(os.path.realpath(__file__)) module = tf.load_op_library(os.path.join(library_dir, 'libtf_blocksparse.so')) M, N, K = 8192,8192,8192 a = tf.placeholder(tf.float16, shape=[M, K]) b = tf.placeholder(tf.float16, shape=[N, K]) locks = tf.placeholder(tf.int32, shape=[4096]) # c = tf.matmul(a, b, transpose_a=True) c = module.dot(a, b, locks) # Reference ha = np.random.rand(M, K).astype(np.float16) hb = np.random.rand(N, K).astype(np.float16) # Run sess = tf.InteractiveSession() sess.run(tf.global_variables_initializer()) result = sess.run([c], feed_dict = {locks: np.zeros(4096), a: ha, b: hb})[0] #bench = tf.test.Benchmark().run_op_benchmark(sess=sess, # op_or_tensor=c, # feed_dict={a: ha, b: hb}, # min_iters=100) #print(end - start) #print(2*M*N*K / (end - start) * 1e-12) #hresult = np.dot(ha.T, hb).T #dif = np.abs(result - hresult) #print("dif: %f" % np.max(dif)) #np.savetxt("dif.txt", dif, fmt="%5.2f") #np.savetxt("gpu.txt", result, fmt="%5.2f") #np.savetxt("cpu.txt", hresult, fmt="%5.2f")