/* * Copyright (c) 2015, PHILIPPE TILLET. All rights reserved. * * This file is part of ISAAC. * * ISAAC is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, * MA 02110-1301 USA */ #include "isaac/array.h" #include "isaac/jit/syntax/expression/preset.h" #include "isaac/jit/syntax/engine/process.h" #include "isaac/jit/generation/matrix_product.h" #include "isaac/jit/generation/engine/keywords.h" #include "isaac/exception/api.h" #include "tools/arguments.hpp" #include "tools/vector_types.hpp" #include #include "isaac/tools/cpp/align.hpp" namespace isaac { namespace templates { matrix_product_parameters::matrix_product_parameters(unsigned int simd_width , unsigned int local_size_0, unsigned int KL, unsigned int local_size_1, unsigned int D , unsigned int ms, unsigned int ks, unsigned int ns , fetching_policy_type A_fetching_policy, fetching_policy_type B_fetching_policy , unsigned int local_fetch_0, unsigned int local_fetch_1): base::parameters_type(simd_width, local_size_0, local_size_1, 1), kL(KL), depth(D), mS(ms), kS(ks), nS(ns), A_fetching_policy(A_fetching_policy), B_fetching_policy(B_fetching_policy), local_fetch_0(local_fetch_0), local_fetch_1(local_fetch_1), mL(ms*local_size_0), nL(ns*local_size_1) { } unsigned int matrix_product::lmem_usage(expression_tree const & expression) const { unsigned int N = 0; N += p_.kL * p_.mL; N += p_.nL * p_.kL; return N*size_of(expression.dtype()); } unsigned int matrix_product::registers_usage(expression_tree const & expression) const { unsigned int N = p_.mS * p_.nS + p_.mS * p_.kS + p_.kS * p_.nS; return N*size_of(expression.dtype()); } unsigned int matrix_product::temporary_workspace(expression_tree const & expressions) const { std::vector MNK = input_sizes(expressions); int_t M = MNK[0]; int_t N = MNK[1]; if(p_.depth > 1) return M*N*p_.depth; return 0; } int matrix_product::is_invalid_impl(driver::Device const &, expression_tree const &) const { // if(device.vendor()==driver::Device::Vendor::NVIDIA && p_.simd_width > 1) // return TEMPLATE_INVALID_SIMD_WIDTH; if(p_.A_fetching_policy!=FETCH_FROM_LOCAL || p_.B_fetching_policy!=FETCH_FROM_LOCAL) return TEMPLATE_INVALID_FETCHING_POLICY_TYPE; if ((p_.mS % p_.simd_width) > 0 || (p_.nS % p_.simd_width) > 0) return TEMPLATE_MS_NS_MUST_BE_SIMD_WIDTH_MULTIPLE; if(p_.mL > 256 || p_.nL > 256) return TEMPLATE_BLOCK_SIZE_TOO_LARGE; if ( p_.kS % p_.kL == 0) return TEMPLATE_KS_MUST_BE_SMALLER_THAN_KL; if (p_.A_fetching_policy==FETCH_FROM_LOCAL || p_.B_fetching_policy==FETCH_FROM_LOCAL){ if ((p_.local_fetch_0*p_.local_fetch_1) !=(p_.local_size_0*p_.local_size_1)) return TEMPLATE_LOCAL_FETCH_PRODUCT_MUST_MATCH_LOCAL_SIZE_PRODUCT; } if (p_.A_fetching_policy==FETCH_FROM_LOCAL) { unsigned int bound1 = (A_trans_=='N')?p_.kL:p_.mL; unsigned int bound0 = (A_trans_=='N')?p_.mL:p_.kL; if (p_.local_fetch_1>0 && (bound1 % p_.local_fetch_1)> 0) return A_trans_=='N'?TEMPLATE_LOCAL_FETCH_1_MUST_BE_KL_MULTIPLE:TEMPLATE_LOCAL_FETCH_1_MUST_BE_ML_MULTIPLE; if (p_.local_fetch_0>0 && (bound0 % (p_.local_fetch_0*p_.simd_width)) > 0) return A_trans_=='N'?TEMPLATE_LOCAL_FETCH_0_MUST_BE_NL_MULTIPLE:TEMPLATE_LOCAL_FETCH_0_MUST_BE_KL_MULTIPLE; } if (p_.B_fetching_policy==FETCH_FROM_LOCAL) { unsigned int bound1 = (B_trans_=='T')?p_.kL:p_.nL; unsigned int bound0 = (B_trans_=='T')?p_.nL:p_.kL; if (p_.local_fetch_1>0 && (bound1 % p_.local_fetch_1)> 0) return B_trans_=='T'?TEMPLATE_LOCAL_FETCH_1_MUST_BE_KL_MULTIPLE:TEMPLATE_LOCAL_FETCH_1_MUST_BE_ML_MULTIPLE; if (p_.local_fetch_0>0 && (bound0 % (p_.local_fetch_0*p_.simd_width)) > 0) return B_trans_=='T'?TEMPLATE_LOCAL_FETCH_1_MUST_BE_KL_MULTIPLE:TEMPLATE_LOCAL_FETCH_1_MUST_BE_ML_MULTIPLE; } return TEMPLATE_VALID; } std::string matrix_product::generate_impl(std::string const & suffix, expression_tree const & tree, driver::Device const & device, symbolic::symbols_table const &) const { using std::string; using tools::to_string; driver::backend_type backend = device.backend(); bool has_depth = p_.depth > 1; #define VLOAD(offset, ptr) vload(p_.simd_width, sdtype, offset, ptr, "1", backend, true) #define VLOAD_MISALIGNED(offset, ptr) vload(p_.simd_width, sdtype, offset, ptr, "1", backend, false) #define VSTORE(value, offset, ptr) vstore(p_.simd_width, sdtype, value, offset, ptr, "1", backend) symbolic::preset::matrix_product::args args; infos(tree, args); std::string ASTRIDE1 = (args.A->ld[0] > 1)?"*Astride1":""; std::string BSTRIDE1 = (args.B->ld[0] > 1)?"*Bstride1":""; std::string CSTRIDE1 = (args.C->ld[0] > 1)?"*Cstride1":""; ////////////////// /// INIT /// ////////////// kernel_generation_stream stream(backend); numeric_type dtype = tree.dtype(); std::string sdtype = to_string(dtype); std::string vdtype = append_width(sdtype, p_.simd_width); ////////////////// /// DECLARATIONS /// ////////////// std::string matrix_product_name = "matrix_product"; std::string reduce_name = "reduce"; matrix_product_name += suffix; reduce_name += suffix; switch(backend) { case driver::OPENCL: stream << " __attribute__((reqd_work_group_size(" << p_.local_size_0 << "," << p_.local_size_1 << ",1)))" << std::endl; break; default: break; } stream << "$KERNEL void matrix_product" << suffix << "($SIZE_T M, $SIZE_T N, $SIZE_T K, " << "$GLOBAL " << sdtype << "* C, $SIZE_T ldc, $SIZE_T offc, $SIZE_T Cstride1, " << sdtype << " alpha," << "$GLOBAL " << sdtype << "* A, $SIZE_T lda, $SIZE_T offa, $SIZE_T Astride1," << "$GLOBAL " << sdtype << "* B, $SIZE_T ldb, $SIZE_T offb, $SIZE_T Bstride1," << sdtype << " beta)" << std::endl; stream << "{" << std::endl; stream.inc_tab(); ///Declare stream << "//blocks" << std::endl; stream << sdtype << " rC[" << p_.mS << "][" << p_.nS << "] = {{0}};" << std::endl; stream << vdtype << " rA[" << p_.kS << "][" << p_.mS/p_.simd_width << "];" << std::endl; stream << vdtype << " rB[" << p_.kS << "][" << p_.nS/p_.simd_width << "];" << std::endl; stream << std::endl; stream << "//pointers" << std::endl; size_t llda = (A_trans_=='N')?p_.mL:p_.kL; size_t lldb = (B_trans_=='T')?p_.nL:p_.kL; stream << "$LOCAL " << sdtype << " lA[" << p_.kL*p_.mL << "];" << std::endl; stream << "$LOCAL " << sdtype << " lB[" << p_.kL*p_.nL << "];" << std::endl; unsigned int npA = p_.mL/(A_trans_=='N'?p_.local_fetch_0*p_.simd_width:p_.local_fetch_1); unsigned int npB = p_.nL/(B_trans_=='T'?p_.local_fetch_0*p_.simd_width:p_.local_fetch_1); stream << "$GLOBAL " << sdtype << "* Ai[" << npA << "];" << std::endl; stream << "$GLOBAL " << sdtype << "* Bi[" << npB << "];" << std::endl; stream << std::endl; stream << "//identifiers" << std::endl; stream << "int2 idT;" << std::endl; stream << "int idt;" << std::endl; if(has_depth) stream << "int gidz, div, offz;" << std::endl; stream << "uint4 ids;" << std::endl; stream << "ids.x = $GROUP_IDX_0;" << std::endl; stream << "ids.y = $GROUP_IDX_1;" << std::endl; stream << "ids.z = $LOCAL_IDX_0;" << std::endl; stream << "ids.w = $LOCAL_IDX_1;" << std::endl; stream << std::endl; stream << "//offsets" << std::endl; stream << "A += offa;" << std::endl; stream << "B += offb;" << std::endl; stream << "C += offc;" << std::endl; if(has_depth) { stream << "gidz = $GROUP_IDX_2;" << std::endl; stream << "div = (K+" << p_.depth-1 << ")/" << p_.depth << ";" << std::endl; stream << "offz = div*gidz;" << std::endl; stream << "K = min(K - div*gidz, ($SIZE_T)div);" << std::endl; } stream << "idt = " << p_.local_size_0 << "*ids.w + ids.z;" << std::endl; stream << "idT.y = idt/" << p_.local_fetch_0 << ";" << std::endl; stream << "idT.x = idt - " << p_.local_fetch_0 << "*idT.y;" << std::endl; stream << std::endl; stream << "//Adjust pointers and bounds per work-item" << std::endl; stream << "ids.x *= " << p_.mL << ";" << std::endl; stream << "ids.y *= " << p_.nL << ";" << std::endl; stream << "idT.x *= " << p_.simd_width << ";" << std::endl; stream << "M -= ids.x;" << std::endl; if(A_trans_=='N') stream << "M -= idT.x;" << std::endl; else stream << "M -= idT.y;" << std::endl; stream << "N -= ids.y;" << std::endl; if(B_trans_=='T') stream << "N -= idT.x;" << std::endl; else stream << "N -= idT.y;" << std::endl; if (A_trans_=='N') { stream << "A += ids.x" << ASTRIDE1 << ";" << std::endl; stream << "A += idT.y*lda;" << std::endl; if(has_depth) stream << "A += offz*lda;" << std::endl; } else { stream << "A += ids.x*lda;" << std::endl; stream << "A += idT.x" << ASTRIDE1 << ";" << std::endl; if(has_depth) stream << "A += offz;" << std::endl; } if(B_trans_=='T') { stream << "B += ids.y" << BSTRIDE1 << ";" << std::endl; stream << "B += idT.y*ldb;" << std::endl; if(has_depth) stream << "B += offz*ldb;" << std::endl; } else { stream << "B += ids.y*ldb;" << std::endl; stream << "B += idT.x" << BSTRIDE1 << ";" << std::endl; if(has_depth) stream << "B += offz;" << std::endl; } stream << "#pragma unroll" << std::endl; stream << "for(int i = 0 ; i < " << npA << " ; ++i){" << std::endl; stream.inc_tab(); stream << "Ai[i] = A;" << std::endl; stream.dec_tab(); stream << "}" << std::endl; stream << std::endl; stream << "#pragma unroll" << std::endl; stream << "for(int i = 0 ; i < " << npB << " ; ++i){" << std::endl; stream.inc_tab(); stream << "Bi[i] = B;" << std::endl; stream.dec_tab(); stream << "}" << std::endl; stream << std::endl; for(unsigned int i = 0 ; i < npA ; i++ ) if (A_trans_=='N') stream << "Ai[" << i << "] += " << Select(backend, to_string(i*p_.local_fetch_0*p_.simd_width) + " < M", "(int)((idT.x + " + to_string(i*p_.local_fetch_0*p_.simd_width) + ")" + ASTRIDE1 + ")", "0") << ";" << std::endl; else stream << "Ai[" << i << "] += " << Select(backend, to_string(i*p_.local_fetch_1) + " < M", "(int)((idT.y + " + to_string(i*p_.local_fetch_1) + ")*lda)", "0") << ";" << std::endl; for(unsigned int i = 0 ; i < npB ; i++ ) if (B_trans_=='T') stream << "Bi[" << i << "] += " << Select(backend, to_string(i*p_.local_fetch_0*p_.simd_width) + " < N", "(int)((idT.x + " + to_string(i*p_.local_fetch_0*p_.simd_width) + ")" + BSTRIDE1 + ")", "0") << ";" << std::endl; else stream << "Bi[" << i << "] += " << Select(backend, to_string(i*p_.local_fetch_1) + " < N", "(int)((idT.y + " + to_string(i*p_.local_fetch_1) + ")*ldb)", "0") << ";" << std::endl; stream << std::endl; stream << "//Outer loop" << std::endl; stream << "while(K >=" << p_.kL << ")" << std::endl; stream << "{" << std::endl; stream.inc_tab(); auto fetch_to_lds = [&](bool last_iteration) { stream << "$LOCAL_BARRIER;" << std::endl; stream << "$LOCAL_PTR " << sdtype << "* ldsA = lA + idT.y*" << llda << " + idT.x;" << std::endl; stream << "$LOCAL_PTR " << sdtype << "* ldsB = lB + idT.y*" << lldb << " + idT.x;" << std::endl; stream << "//Fetch A to local memory" << std::endl; if (A_trans_=='N') { for(unsigned int k = 0; k < p_.kL; k += p_.local_fetch_1) for(unsigned int m = 0; m < p_.mL; m += p_.local_fetch_0*p_.simd_width) { std::string mm = to_string(m/(p_.simd_width*p_.local_fetch_0)); std::string kk = to_string(k); if(last_iteration) for(unsigned int s = 0 ; s < p_.simd_width ; ++s) stream << "ldsA[" << k*llda + m + s << "] = (condy" << k << " && " << s << "< M)? Ai[" << mm << "][" << k << "*lda + " << s << "] : 0;" << std::endl; else stream << VSTORE(VLOAD_MISALIGNED("0" ,"&Ai[" + mm +"][" + kk + "*lda]"), "0", "ldsA + " + to_string(k*llda+m)) << ";" << std::endl; } } else { for(unsigned int k = 0; k < p_.kL; k += p_.local_fetch_0*p_.simd_width) for(unsigned int m = 0; m < p_.mL; m += p_.local_fetch_1) { std::string mm = to_string(m/p_.local_fetch_1); std::string kk = to_string(k); if(last_iteration) for(unsigned int s = 0 ; s < p_.simd_width ; ++s) stream << "ldsA[" << m*llda + k + s << "] = condx" << k + s << "? Ai[" << mm << "][" << k + s << ASTRIDE1 << "] : 0;" << std::endl; else stream << VSTORE(VLOAD_MISALIGNED("0", "&Ai[" + mm + "][" + kk + ASTRIDE1 + "]"), "0", "ldsA + " + to_string(m*llda+k)) << ";" << std::endl; } } stream << "//Fetch B to local memory" << std::endl; if (B_trans_=='T') { for(unsigned int k = 0; k < p_.kL; k += p_.local_fetch_1) for(unsigned int n = 0; n < p_.nL; n += p_.local_fetch_0*p_.simd_width) { std::string nn = to_string(n/(p_.simd_width*p_.local_fetch_0)); std::string kk = to_string(k); if(last_iteration) for(unsigned int s = 0 ; s < p_.simd_width ; ++s) stream << "ldsB[" << k*lldb + n + s << "] = (condy" << k << " && " << s << "< N)? Bi[" << nn << "][" << kk << "*ldb +" << s << "] : 0;" << std::endl; else stream << VSTORE(VLOAD_MISALIGNED("0" ,"&Bi[" + nn +"][" + kk + "*ldb]"), "0", "ldsB + " + to_string(k*lldb+n)) << ";" << std::endl; } } else { for(unsigned int k = 0; k < p_.kL; k += p_.local_fetch_0*p_.simd_width) for(unsigned int n = 0; n < p_.nL; n += p_.local_fetch_1) { std::string nn = to_string(n/p_.local_fetch_1); std::string kk = to_string(k); if(last_iteration) for(unsigned int s = 0 ; s < p_.simd_width ; ++s) stream << "ldsB[" << n*lldb + k + s << "] = condx" << k + s << "? Bi[" << nn << "][" << k + s << BSTRIDE1 << "] : 0;" << std::endl; else stream << VSTORE(VLOAD_MISALIGNED("0", "&Bi[" + nn + "][" + kk + BSTRIDE1 + "]"), "0", "ldsB + " + to_string(n*lldb+k)) << ";" << std::endl; } } if(A_trans_=='N') stream << "ldsA = lA + ids.z*" << p_.simd_width << ";" << std::endl; else stream << "ldsA = lA + ids.z*" << llda*p_.simd_width << ";" << std::endl; if(B_trans_=='T') stream << "ldsB = lB + ids.w*" << p_.simd_width << ";" << std::endl; else stream << "ldsB = lB + ids.w*" << lldb*p_.simd_width << ";" << std::endl; stream << "$LOCAL_BARRIER;" << std::endl; stream << "//Inner loop" << std::endl; stream << "for(unsigned int k = 0; k < " << p_.kL << "; k+=" << p_.kS << "){" << std::endl; stream.inc_tab(); stream << "//Fetch A to registers" << std::endl; stream << "#pragma unroll" << std::endl; stream << "for(unsigned int kk = 0; kk < " << p_.kS << "; kk++)" << std::endl; stream << "#pragma unroll " << p_.mS/p_.simd_width << std::endl; stream << "for(unsigned int mm = 0; mm < " << p_.mS/p_.simd_width << "; mm++)" << std::endl; stream << "{" << std::endl; stream.inc_tab(); if(A_trans_=='N') stream << "rA[kk][mm] = " << VLOAD("0", "ldsA + k*" + to_string(llda) + " + mm*" + to_string(p_.local_size_0*p_.simd_width) + "+ kk*" + to_string(llda)) << ";" << std::endl; else { if(p_.simd_width==1) stream << "rA[kk][mm] = ldsA[k + mm*" << p_.local_size_0*llda << "+ kk" << "];" << std::endl; else for(unsigned int s = 0 ; s < p_.simd_width ; ++s) stream << access_vector_type("rA[kk][mm]", s) << " = ldsA[k + (mm*" << p_.simd_width*p_.local_size_0 << " + " << s << ")*" << llda << "+ kk];" << std::endl; } stream.dec_tab(); stream << "}" << std::endl; stream << "//Fetch B to registers" << std::endl; stream << "#pragma unroll " << p_.kS << std::endl; stream << "for(unsigned int kk = 0; kk < " << p_.kS << "; kk++)" << std::endl; stream << "#pragma unroll " << p_.nS/p_.simd_width << std::endl; stream << "for(unsigned int nn = 0; nn < " << p_.nS/p_.simd_width << "; nn++)" << std::endl; stream << "{" << std::endl; stream.inc_tab(); if(B_trans_=='T') stream << "rB[kk][nn] = " << VLOAD("0", "ldsB + k*" + to_string(lldb) + " + nn*" + to_string(p_.local_size_1*p_.simd_width) + "+ kk*" + to_string(lldb)) << ";" << std::endl; else { if(p_.simd_width==1) stream << "rB[kk][nn] = ldsB[k" << " + nn*" << p_.local_size_1*lldb << "+ kk" << "];" << std::endl; else for(unsigned int s = 0 ; s < p_.simd_width ; ++s) stream << access_vector_type("rB[kk][nn]", s) << " = ldsB[k" << " + (nn*" << p_.simd_width*p_.local_size_1 << " + " << s << ")*" << lldb << "+ kk];" << std::endl; } stream.dec_tab(); stream << "}" << std::endl; stream << "//FMA computations" << std::endl; for(unsigned int kk=0 ; kk < p_.kS; ++kk) for(unsigned int nn=0; nn < p_.nS; ++nn) for(unsigned int mm=0; mm < p_.mS; ++mm){ string res_str, lhs_str, rhs_str; res_str = "rC[" + to_string(mm) + "][" + to_string(nn) + "]"; if (p_.simd_width==1) lhs_str = "rA[" + to_string(kk) + "][" + to_string(mm) + "]"; else lhs_str = access_vector_type("rA[" + to_string(kk) + "][" + to_string(mm/p_.simd_width) + "]", mm%p_.simd_width); if (p_.simd_width==1) rhs_str = "rB[" + to_string(kk) + "]["+to_string(nn)+"]"; else rhs_str = access_vector_type("rB[" + to_string(kk) + "]["+to_string(nn/p_.simd_width)+"]", nn%p_.simd_width); stream << res_str << "= $MAD(" << lhs_str << "," << rhs_str << "," << res_str << ");" << std::endl; } stream.dec_tab(); stream << "}" << std::endl; stream << "K -= " << p_.kL << ";" << std::endl; //Increment A pointers to global memory if (A_trans_=='N') for(unsigned int i = 0 ; i < npA ; ++i) stream << "Ai[" << i << "] += " << p_.kL << "*lda;" << std::endl; else for(unsigned int i = 0 ; i < npA ; ++i) stream << "Ai[" << i << "] += " << p_.kL << ASTRIDE1 << ";" << std::endl; //Increment B pointers to global memory if (B_trans_=='T') for(unsigned int i = 0 ; i < npB ; ++i) stream << "Bi[" << i << "] += " << p_.kL << "*ldb;" << std::endl; else for(unsigned int i = 0 ; i < npB ; ++i) stream << "Bi[" << i << "] += " << p_.kL << BSTRIDE1 << ";" << std::endl; }; fetch_to_lds(false); stream.dec_tab(); stream << "}" << std::endl; if(A_trans_=='N' || B_trans_=='T') { stream << "int Ky = K - idT.y;" << std::endl; for(unsigned int k = 0; k < p_.kL; k += p_.local_fetch_1) stream << "int condy" << k << " = " << k << " < Ky;" << std::endl; } if(A_trans_=='T' || B_trans_=='N') { stream << "int Kx = K - idT.x;" << std::endl; for(unsigned int k = 0 ; k < p_.kL ; k += p_.local_fetch_0*p_.simd_width) for(unsigned int s = 0 ; s < p_.simd_width ; ++s) stream << "int condx" << k + s << " = " << k + s << " < Kx;" << std::endl; } fetch_to_lds(true); stream << "//Write back C" << std::endl; stream << "M += ids.x;" << std::endl; if(A_trans_=='N') stream << "M += idT.x;" << std::endl; else stream << "M += idT.y;" << std::endl; if(B_trans_=='T') stream << "N += idT.x;" << std::endl; else stream << "N += idT.y;" << std::endl; stream << "N += ids.y;" << std::endl; stream << "C += ids.x" << CSTRIDE1 << ";" << std::endl; stream << "C += ids.z*" << p_.simd_width << CSTRIDE1 << ";" << std::endl; stream << "C += ids.y*ldc;" << std::endl; stream << "C += ids.w*" << p_.simd_width << "*ldc;" << std::endl; if(has_depth) stream << "C += gidz*ldc*N;" << std::endl; stream << "M -= ids.x;" << std::endl; stream << "M -= ids.z*" << p_.simd_width << ";" << std::endl; stream << "N -= ids.y;" << std::endl; stream << "N -= ids.w*" << p_.simd_width << ";" << std::endl; for(unsigned int n=0; n < p_.nS; ++n) { string Cj = to_string((n/p_.simd_width)*(p_.local_size_1*p_.simd_width) + n%p_.simd_width); stream << "if(" << Cj << " >= N) return;" << std::endl; for(unsigned int m=0; m < p_.mS; ++m) stream << "rC[" << m << "][" << n << "] *= alpha;" << std::endl; for(unsigned int m=0; m < p_.mS; ++m) { string Ci = to_string((m/p_.simd_width)*(p_.local_size_0*p_.simd_width) + m%p_.simd_width); stream << "if(" << Ci << "< M) "; if(has_depth) stream << "C[" << Ci << CSTRIDE1 << "] = rC[" << m << "][" << n << "];" << std::endl; else stream << "C[" << Ci << CSTRIDE1 << "] = rC[" << m << "][" << n << "] + ((beta != (" << sdtype << ")0)?(beta*" << "C[" << Ci << CSTRIDE1 << "]):0);" << std::endl; } if((n+1)%p_.simd_width==0){ stream << "C += ldc*" << p_.local_size_1*p_.simd_width - p_.simd_width + 1 << ";" << std::endl; } else{ stream << "C += ldc;" << std::endl; } } stream.dec_tab(); stream << "}" << std::endl; if(has_depth) { stream << "$KERNEL void reduce" << suffix << "($SIZE_T M, $SIZE_T N, $SIZE_T D, " << "$GLOBAL " << sdtype << "* Z, $SIZE_T Zld," << "$GLOBAL " << sdtype << "* C, $SIZE_T ldc, $SIZE_T Cstart, $SIZE_T Cstride," << sdtype << " beta)" << std::endl; stream << "{" << std::endl; stream.inc_tab(); stream << "C += Cstart;" << std::endl; stream << "for(unsigned int i = $GLOBAL_IDX_0 ; i < M ; i += $GLOBAL_SIZE_0)" << std::endl; stream << "{" << std::endl; stream.inc_tab(); stream << "for(unsigned int j = $GLOBAL_IDX_1 ; j < N ; j += $GLOBAL_SIZE_1)" << std::endl; stream << "{" << std::endl; stream.inc_tab(); stream << sdtype << " acc = 0;" << std::endl; stream << "for(unsigned int k = 0 ; k < D ; k++)" << std::endl; stream.inc_tab(); stream << "acc += Z[i + j*Zld + k*Zld*N];" << std::endl; stream.dec_tab(); stream << "C[i*Cstride + j*ldc] = acc + beta*C[i*Cstride + j*ldc];" << std::endl; stream.dec_tab(); stream << "}" << std::endl; stream.dec_tab(); stream << "}" << std::endl; stream.dec_tab(); stream << "}" << std::endl; } return stream.str(); #undef VLOAD #undef VST0RE } void matrix_product::enqueue_block(driver::CommandQueue & queue, int_t M, int_t N, int_t K, expression_tree::node const & A, expression_tree::node const & B, expression_tree::node const & C, value_scalar const & alpha, value_scalar const & beta, driver::Program const & program, std::string const & suffix, runtime::execution_options_type const & options) { using tools::align; if(M==0 || N==0 || K==0) return; driver::backend_type backend = queue.context().backend(); std::string matrix_product_name = "matrix_product"; std::string reduce_name = "reduce"; matrix_product_name += suffix; reduce_name += suffix; driver::Kernel matrix_product(program, matrix_product_name.c_str()); driver::NDRange local(p_.local_size_0, p_.local_size_1, 1); driver::NDRange global(align(align(M,p_.mS)/p_.mS, p_.local_size_0), align(align(N,p_.nS)/p_.nS, p_.local_size_1), p_.depth); unsigned int current_arg = 0; driver::Buffer& workspace = driver::backend::workspaces::get(options.queue(queue.context())); matrix_product.setSizeArg(current_arg++, M); matrix_product.setSizeArg(current_arg++, N); matrix_product.setSizeArg(current_arg++, K); if(p_.depth==1) { if(backend==driver::OPENCL) matrix_product.setArg(current_arg++, C.array.handle.cl); else matrix_product.setArg(current_arg++, C.array.handle.cu); matrix_product.setSizeArg(current_arg++, C.ld[1]); matrix_product.setSizeArg(current_arg++, C.array.start); matrix_product.setSizeArg(current_arg++, C.ld[0]); } else { matrix_product.setArg(current_arg++, workspace); matrix_product.setSizeArg(current_arg++, M); matrix_product.setSizeArg(current_arg++, 0); matrix_product.setSizeArg(current_arg++, 1); } matrix_product.setArg(current_arg++, alpha); if(backend==driver::OPENCL) matrix_product.setArg(current_arg++, A.array.handle.cl); else matrix_product.setArg(current_arg++, A.array.handle.cu); matrix_product.setSizeArg(current_arg++, A.ld[1]); matrix_product.setSizeArg(current_arg++, A.array.start); matrix_product.setSizeArg(current_arg++, A.ld[0]); if(backend==driver::OPENCL) matrix_product.setArg(current_arg++, B.array.handle.cl); else matrix_product.setArg(current_arg++, B.array.handle.cu); matrix_product.setSizeArg(current_arg++, B.ld[1]); matrix_product.setSizeArg(current_arg++, B.array.start); matrix_product.setSizeArg(current_arg++, B.ld[0]); matrix_product.setArg(current_arg++, beta); options.enqueue(program.context(), matrix_product, global, local); if(p_.depth > 1) { unsigned int current_arg = 0; driver::Kernel reduce(program, reduce_name.c_str()); driver::NDRange local(p_.local_size_0, p_.local_size_1); driver::NDRange global(align(M, p_.local_size_0), align(N, p_.local_size_1)); reduce.setSizeArg(current_arg++, M); reduce.setSizeArg(current_arg++, N); reduce.setSizeArg(current_arg++, p_.depth); reduce.setArg(current_arg++, workspace); reduce.setSizeArg(current_arg++, M); if(backend==driver::OPENCL) reduce.setArg(current_arg++, C.array.handle.cl); else reduce.setArg(current_arg++, C.array.handle.cu); reduce.setSizeArg(current_arg++, C.ld[1]); reduce.setSizeArg(current_arg++, C.array.start); reduce.setSizeArg(current_arg++, C.ld[0]); reduce.setArg(current_arg++, beta); options.enqueue(program.context(), reduce, global, local); } } std::vector matrix_product::infos(expression_tree const & tree, symbolic::preset::matrix_product::args& arguments) const { expression_tree::data_type const & array = tree.data(); std::size_t root = tree.root(); arguments = symbolic::preset::matrix_product::check(array, root); int_t M = arguments.C->shape[0]; int_t N = arguments.C->shape[1]; int_t K = (A_trans_=='T')?arguments.A->shape[0]:arguments.A->shape[1]; return {M, N, K}; } matrix_product::matrix_product(matrix_product_parameters const & parameters, char A_trans, char B_trans) : base_impl(parameters, FUSE_INDEPENDENT), A_trans_(A_trans), B_trans_(B_trans) { if(A_trans_=='N' && B_trans_=='N') type_ = MATRIX_PRODUCT_NN; else if(A_trans_=='T' && B_trans_=='N') type_ = MATRIX_PRODUCT_TN; else if(A_trans_=='N' && B_trans_=='T') type_ = MATRIX_PRODUCT_NT; else if(A_trans_=='T' && B_trans_=='T') type_ = MATRIX_PRODUCT_TT; else throw; } std::vector matrix_product::input_sizes(expression_tree const & expressions) const { symbolic::preset::matrix_product::args dummy; return infos((expression_tree&)expressions, dummy); } void matrix_product::enqueue(driver::CommandQueue & queue, driver::Program const & program, std::string const & suffix, runtime::execution_handler const & control) { expression_tree const & expressions = control.x(); symbolic::preset::matrix_product::args args; std::vector MNK = infos(expressions, args); int_t M = MNK[0]; int_t N = MNK[1]; int_t K = MNK[2]; //Skip if empty if(M==0 || N == 0 || K ==0) return; //Enqueue runtime::execution_options_type const & options = control.execution_options(); enqueue_block(queue, M, N, K, *args.A, *args.B, *args.C, args.alpha, args.beta, program, suffix, options); } // matrix_product_nn::matrix_product_nn(unsigned int simd , int_t ls0, int_t KL, int_t ls1, int_t D , int_t ms, int_t ks, int_t ns , fetching_policy_type Afetch , fetching_policy_type Bfetch , int_t lfetch0, int_t lfetch1) : matrix_product(matrix_product_parameters(simd, ls0, KL, ls1, D, ms, ks, ns, Afetch, Bfetch, lfetch0, lfetch1), 'N', 'N') { } // matrix_product_tn::matrix_product_tn(unsigned int simd , int_t ls0, int_t KL, int_t ls1, int_t D , int_t ms, int_t ks, int_t ns , fetching_policy_type Afetch , fetching_policy_type Bfetch , int_t lfetch0, int_t lfetch1) : matrix_product(matrix_product_parameters(simd, ls0, KL, ls1, D, ms, ks, ns, Afetch, Bfetch, lfetch0, lfetch1), 'T', 'N') { } // matrix_product_nt::matrix_product_nt(unsigned int simd , int_t ls0, int_t KL, int_t ls1, int_t D , int_t ms, int_t ks, int_t ns , fetching_policy_type Afetch , fetching_policy_type Bfetch , int_t lfetch0, int_t lfetch1) : matrix_product(matrix_product_parameters(simd, ls0, KL, ls1, D, ms, ks, ns, Afetch, Bfetch, lfetch0, lfetch1), 'N', 'T') { } // matrix_product_tt::matrix_product_tt(unsigned int simd , int_t ls0, int_t KL, int_t ls1, int_t D , int_t ms, int_t ks, int_t ns , fetching_policy_type Afetch , fetching_policy_type Bfetch , int_t lfetch0, int_t lfetch1) : matrix_product(matrix_product_parameters(simd, ls0, KL, ls1, D, ms, ks, ns, Afetch, Bfetch, lfetch0, lfetch1), 'T', 'T') { } } }