/* * Copyright (c) 2015, PHILIPPE TILLET. All rights reserved. * * This file is part of ISAAC. * * ISAAC is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, * MA 02110-1301 USA */ #include "isaac/runtime/predictors/random_forest.h" #include "rapidjson/to_array.hpp" namespace isaac { namespace runtime { namespace predictors { random_forest::tree::tree(rapidjson::Value const & treerep) { children_left_ = rapidjson::to_int_array(treerep["children_left"]); children_right_ = rapidjson::to_int_array(treerep["children_right"]); threshold_ = rapidjson::to_float_array(treerep["threshold"]); feature_ = rapidjson::to_float_array(treerep["feature"]); for(rapidjson::SizeType i = 0 ; i < treerep["value"].Size() ; i++) value_.push_back(rapidjson::to_float_array(treerep["value"][i])); D_ = value_[0].size(); } std::vector const & random_forest::tree::predict(std::vector const & x) const { int_t idx = 0; while(children_left_[idx]!=-1) idx = (x[feature_[idx]] <= threshold_[idx])?children_left_[idx]:children_right_[idx]; return value_[idx]; } size_t random_forest::tree::D() const { return D_; } random_forest::random_forest(rapidjson::Value const & estimators) { for(rapidjson::SizeType i = 0 ; i < estimators.Size() ; ++i) estimators_.push_back(tree(estimators[i])); D_ = estimators_.front().D(); } std::vector random_forest::predict(std::vector const & x) const { std::vector res(D_, 0); for(const auto & elem : estimators_) { std::vector const & subres = elem.predict(x); for(size_t i = 0 ; i < D_ ; ++i) res[i] += subres[i]; } for(size_t i = 0 ; i < D_ ; ++i) res[i] /= estimators_.size(); return res; } std::vector const & random_forest::estimators() const { return estimators_; } } } }