#include #include "triton/driver/buffer.h" #include "triton/driver/backend.h" #include "triton/driver/stream.h" #include "triton/runtime/jit.h" #include "triton/tools/bench.hpp" #include "triton/dnn/gemm.h" #define EIGEN_USE_GPU #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/shape_inference.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/util/cuda_kernel_helper.h" #include "tensorflow/core/util/padding.h" #include "tensorflow/core/util/tensor_format.h" #include "tensorflow/core/framework/common_shape_fns.h" using namespace tensorflow; using GPUDevice = Eigen::GpuDevice; class BlockSparseGemmOp : public OpKernel { public: explicit BlockSparseGemmOp(OpKernelConstruction* context) : OpKernel(context) { } void Compute(OpKernelContext* context){ // get device/stream GPUDevice device = context->eigen_device(); triton::driver::cu_stream sstream(device.stream(), false); triton::driver::context* ctx = sstream.context(); triton::driver::stream* stream = &sstream; // get inputs const Tensor& a = context->input(0); const Tensor& b = context->input(1); const Tensor& locks = context->input(2); // get shapes const int32_t M = a.dim_size(0); const int32_t N = b.dim_size(0); const int32_t K = a.dim_size(1); // allocate output Tensor* c = nullptr; TensorShape out_shape({(int64)M, (int64)N}); OP_REQUIRES_OK(context, context->allocate_output(0, out_shape, &c)); // return early if possible if (out_shape.num_elements() == 0) return; // initialize default compute device triton::jit jit(ctx); // matrix multiplication parameters triton::driver::cu_buffer da(ctx, (CUdeviceptr)a.flat().data(), false); triton::driver::cu_buffer db(ctx, (CUdeviceptr)b.flat().data(), false); triton::driver::cu_buffer dc(ctx, (CUdeviceptr)c->flat().data(), false); triton::driver::cu_buffer dlocks(ctx, (CUdeviceptr)locks.flat().data(), false); stream->synchronize(); // benchmark a given matrix multiplication kernel auto benchmark = [&](triton::driver::kernel* kernel, triton::jit::launch_information info) { // launch info unsigned TM = info.global_range_size[0]; unsigned TN = info.global_range_size[1]; unsigned nthreads = info.num_threads; unsigned GZ = jit.get_int("GZ"); std::array grid = {(M + TM - 1)/TM, (N + TN - 1)/TN, GZ}; triton::dnn::gemm::set_arg(kernel, &da, &db, &dc, M, N, K, &dlocks, grid[0], grid[1]); stream->enqueue(kernel, grid, {nthreads, 1, 1}); stream->synchronize(); double ts = triton::tools::bench([&](){stream->enqueue(kernel, grid, {nthreads, 1, 1});}, [&](){ stream->synchronize(); }, ctx->device()); return 2.*M*N*K / ts * 1e-3; }; std::string src = triton::dnn::gemm::src(false, true, "fp16", "fp16", 1, 1); // just-in-time compile source-code jit.autotune("matmul", src.c_str(), benchmark); // jit.add_module("matmul", src.c_str(), {4, 2, 8, 4, 2, 32, 1, 4, 1, 1, 8, 8, 8, 1}); // jit.add_module("matmul", src.c_str(), {16, 4, 128, 16, 4, 128, 2, 2, 2, 2, 8, 32, 8, 1}); // jit.add_module("matmul", src.c_str(), {8, 8, 128, 16, 8, 128, 2, 2, 2, 2, 16, 32, 8, 1 }); // jit.add_module("matmul", src.c_str(), {16, 4, 128, 16, 4, 128, 2, 2, 2, 2, 8, 16, 8, 1}); jit.add_module("matmul", src.c_str(), {16, 2, 128, 32, 32, 2, 2, 2, 2, 8, 8, 4, 2, 1}); //NN triton::driver::kernel* kernel = jit.get_function("matmul"); triton::jit::launch_information info = jit.get_launch_info("matmul"); std::cout << benchmark(kernel, info) << std::endl;; } private: }; REGISTER_KERNEL_BUILDER(Name("Dot").Device(DEVICE_GPU), BlockSparseGemmOp); REGISTER_OP("Dot") .Input("a: float16") .Input("b: float16") .Input("locks: int32") .Output("c: float32") ;