.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "getting-started/tutorials/05-layer-norm.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_getting-started_tutorials_05-layer-norm.py: Layer Normalization ==================== .. GENERATED FROM PYTHON SOURCE LINES 5-316 .. image:: /getting-started/tutorials/images/sphx_glr_05-layer-norm_001.png :alt: 05 layer norm :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none layer-norm: N Triton Torch Apex 0 1024.0 585.142849 277.694907 468.114273 1 1536.0 630.153868 323.368435 511.999982 2 2048.0 668.734716 334.367358 520.126988 3 2560.0 694.237267 362.477870 512.000013 4 3072.0 702.171410 378.092307 501.551037 5 3584.0 725.873439 384.859062 451.527536 6 4096.0 728.177767 383.251446 451.972420 7 4608.0 670.254540 396.387087 428.651163 8 5120.0 688.403381 395.748783 420.102563 9 5632.0 704.000002 396.969169 415.262685 10 6144.0 702.171410 402.885254 411.313806 11 6656.0 700.631610 398.861429 398.861429 12 7168.0 686.754468 388.772874 384.859062 13 7680.0 678.895043 393.846167 386.415087 14 8192.0 636.271854 390.095241 374.491442 15 8704.0 627.315309 396.763538 380.502740 16 9216.0 604.327881 405.098894 383.002605 17 9728.0 585.142883 409.599987 383.369452 18 10240.0 564.965524 409.600010 381.911416 19 10752.0 546.133312 411.559798 381.445676 20 11264.0 531.634232 403.185684 373.908711 21 11776.0 519.052343 409.599991 377.587162 22 12288.0 513.336807 413.911572 382.505826 23 12800.0 504.433489 410.420828 377.859783 24 13312.0 494.180982 404.159395 377.645399 25 13824.0 481.882350 411.122660 378.739711 26 14336.0 471.967074 400.307157 372.969090 27 14848.0 461.297068 404.027214 374.712936 28 15360.0 454.269882 406.214870 378.092307 29 15872.0 447.098578 405.027112 375.668625 | .. code-block:: default import torch import triton import triton.language as tl try: # This is https://github.com/NVIDIA/apex, NOT the apex on PyPi, so it # should not be added to extras_require in setup.py. import apex HAS_APEX = True except ModuleNotFoundError: HAS_APEX = False @triton.jit def _layer_norm_fwd_fused( Out, A, Weight, Bias, Mean, Rstd, stride, N, eps, BLOCK_SIZE: tl.constexpr, ): # position of elements processed by this program row = tl.program_id(0) Out += row * stride A += row * stride # compute mean mean = 0 _mean = tl.zeros([BLOCK_SIZE], dtype=tl.float32) for off in range(0, N, BLOCK_SIZE): cols = off + tl.arange(0, BLOCK_SIZE) a = tl.load(A + cols, mask=cols < N, other=0., eviction_policy="evict_last").to(tl.float32) _mean += a mean = tl.sum(_mean, axis=0) / N # compute variance _var = tl.zeros([BLOCK_SIZE], dtype=tl.float32) for off in range(0, N, BLOCK_SIZE): cols = off + tl.arange(0, BLOCK_SIZE) a = tl.load(A + cols, mask=cols < N, other=0., eviction_policy="evict_last").to(tl.float32) a = tl.where(cols < N, a - mean, 0.) _var += a * a var = tl.sum(_var, axis=0) / N rstd = 1 / tl.sqrt(var + eps) # write-back mean/rstd tl.store(Mean + row, mean) tl.store(Rstd + row, rstd) # multiply by weight and add bias for off in range(0, N, BLOCK_SIZE): cols = off + tl.arange(0, BLOCK_SIZE) mask = cols < N weight = tl.load(Weight + cols, mask=mask) bias = tl.load(Bias + cols, mask=mask) a = tl.load(A + cols, mask=mask, other=0., eviction_policy="evict_first").to(tl.float32) a_hat = (a - mean) * rstd out = a_hat * weight + bias # # write-back tl.store(Out + cols, out, mask=mask) # Backward pass (DA + partial DW + partial DB) @triton.jit def _layer_norm_bwd_dx_fused( _DA, _DOut, _A, Weight, Mean, Rstd, stride, NumRows, NumCols, eps, BLOCK_SIZE_N: tl.constexpr, ): # position of elements processed by this program pid = tl.program_id(0) row = pid A = _A + row * stride DOut = _DOut + row * stride DA = _DA + row * stride mean = tl.load(Mean + row) rstd = tl.load(Rstd + row) # load data to SRAM _mean1 = tl.zeros([BLOCK_SIZE_N], dtype=tl.float32) _mean2 = tl.zeros([BLOCK_SIZE_N], dtype=tl.float32) for off in range(0, NumCols, BLOCK_SIZE_N): cols = off + tl.arange(0, BLOCK_SIZE_N) mask = cols < NumCols a = tl.load(A + cols, mask=mask, other=0).to(tl.float32) dout = tl.load(DOut + cols, mask=mask, other=0).to(tl.float32) weight = tl.load(Weight + cols, mask=mask, other=0).to(tl.float32) a_hat = (a - mean) * rstd wdout = weight * dout _mean1 += a_hat * wdout _mean2 += wdout mean1 = tl.sum(_mean1, axis=0) / NumCols mean2 = 0. mean2 = tl.sum(_mean2, axis=0) / NumCols for off in range(0, NumCols, BLOCK_SIZE_N): cols = off + tl.arange(0, BLOCK_SIZE_N) mask = cols < NumCols a = tl.load(A + cols, mask=mask, other=0).to(tl.float32) dout = tl.load(DOut + cols, mask=mask, other=0).to(tl.float32) weight = tl.load(Weight + cols, mask=mask, other=0).to(tl.float32) a_hat = (a - mean) * rstd wdout = weight * dout da = (wdout - (a_hat * mean1 + mean2)) * rstd # write-back dx tl.store(DA + cols, da, mask=mask) # Backward pass (total DW + total DB) @triton.jit def _layer_norm_bwd_dwdb( A, DOut, Mean, Var, DW, DB, M, N, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, ): pid = tl.program_id(0) cols = pid * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) dw = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) db = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) UNROLL: tl.constexpr = 4 for i in range(0, M, BLOCK_SIZE_M * UNROLL): for j in range(UNROLL): rows = i + j * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) mask = (rows[:, None] < M) & (cols[None, :] < N) offs = rows[:, None] * N + cols[None, :] a = tl.load(A + offs, mask=mask, other=0.).to(tl.float32) dout = tl.load(DOut + offs, mask=mask, other=0.).to(tl.float32) mean = tl.load(Mean + rows, mask=rows < M, other=0.) rstd = tl.load(Var + rows, mask=rows < M, other=0.) a_hat = (a - mean[:, None]) * rstd[:, None] dw += dout * a_hat db += dout sum_dw = tl.sum(dw, axis=0) sum_db = tl.sum(db, axis=0) tl.store(DW + cols, sum_dw, mask=cols < N) tl.store(DB + cols, sum_db, mask=cols < N) class LayerNorm(torch.autograd.Function): @staticmethod def forward(ctx, a, normalized_shape, weight, bias, eps): # allocate output out = torch.empty_like(a) # reshape input data into 2D tensor a_arg = a.reshape(-1, a.shape[-1]) M, N = a_arg.shape mean = torch.empty((M,), dtype=torch.float32, device="cuda") rstd = torch.empty((M,), dtype=torch.float32, device="cuda") # Less than 64KB per feature: enqueue fused kernel MAX_FUSED_SIZE = 65536 // a.element_size() BLOCK_SIZE = min(MAX_FUSED_SIZE, triton.next_power_of_2(N)) BLOCK_SIZE = max(BLOCK_SIZE, 128) BLOCK_SIZE = min(BLOCK_SIZE, 4096) # heuristics for number of warps num_warps = min(max(BLOCK_SIZE // 256, 1), 8) _layer_norm_fwd_fused[(M,)]( out, a_arg, weight, bias, mean, rstd, a_arg.stride(0), N, eps, BLOCK_SIZE=BLOCK_SIZE, num_warps=num_warps, ) ctx.save_for_backward( a, weight, bias, mean, rstd, ) ctx.BLOCK_SIZE = BLOCK_SIZE ctx.num_warps = num_warps ctx.eps = eps if hasattr(bias, "config"): assert bias.config.grad_scale_name == weight.config.grad_scale_name grad_scale_name = bias.config.grad_scale_name else: grad_scale_name = None ctx.grad_scale_gain_bias_name = grad_scale_name return out @staticmethod def backward(ctx, dout): assert dout.is_contiguous() a, weight, bias, mean, var = ctx.saved_tensors # heuristics for amount of parallel reduction stream for DG/DB N = weight.shape[0] # allocate output da = torch.empty_like(dout) # enqueue kernel using forward pass heuristics # also compute partial sums for DW and DB x_arg = a.reshape(-1, a.shape[-1]) M, N = x_arg.shape dweight = torch.empty((weight.shape[0],), dtype=weight.dtype, device=weight.device) dbias = torch.empty((weight.shape[0],), dtype=weight.dtype, device=weight.device) _layer_norm_bwd_dx_fused[(M,)]( da, dout, a, weight, mean, var, x_arg.stride(0), M, N, ctx.eps, BLOCK_SIZE_N=ctx.BLOCK_SIZE, num_warps=ctx.num_warps, ) if N > 10240: BLOCK_SIZE_N = 128 BLOCK_SIZE_M = 32 num_warps = 4 else: # maximize occupancy for small N BLOCK_SIZE_N = 16 BLOCK_SIZE_M = 16 num_warps = 8 grid = lambda meta: [triton.cdiv(N, meta["BLOCK_SIZE_N"])] _layer_norm_bwd_dwdb[grid]( a, dout, mean, var, dweight, dbias, M, N, BLOCK_SIZE_M=BLOCK_SIZE_M, BLOCK_SIZE_N=BLOCK_SIZE_N, num_warps=num_warps ) return (da, None, dweight, dbias, None) def layer_norm(a, normalized_shape, weight, bias, eps): return LayerNorm.apply(a, normalized_shape, weight, bias, eps) def test_layer_norm(M, N, dtype, eps=1e-5, device='cuda'): torch.manual_seed(0) # create data x_shape = (M, N) w_shape = (x_shape[-1], ) weight = torch.rand(w_shape, dtype=dtype, device='cuda', requires_grad=True) bias = torch.rand(w_shape, dtype=dtype, device='cuda', requires_grad=True) x = -2.3 + 0.5 * torch.randn(x_shape, dtype=dtype, device='cuda') dy = .1 * torch.randn_like(x) x.requires_grad_(True) # forward pass y_tri = layer_norm(x, w_shape, weight, bias, eps) y_ref = torch.nn.functional.layer_norm(x, w_shape, weight, bias, eps).to(dtype) # backward pass (triton) y_tri.backward(dy, retain_graph=True) dx_tri, dw_tri, db_tri = [_.grad.clone() for _ in [x, weight, bias]] x.grad, weight.grad, bias.grad = None, None, None # backward pass (torch) y_ref.backward(dy, retain_graph=True) dx_ref, dw_ref, db_ref = [_.grad.clone() for _ in [x, weight, bias]] # compare triton.testing.assert_almost_equal(y_tri, y_ref) triton.testing.assert_almost_equal(dx_tri, dx_ref) triton.testing.assert_almost_equal(db_tri, db_ref, decimal=1) triton.testing.assert_almost_equal(dw_tri, dw_ref, decimal=1) @triton.testing.perf_report( triton.testing.Benchmark( x_names=['N'], x_vals=[512 * i for i in range(2, 32)], line_arg='provider', line_vals=['triton', 'torch'] + (['apex'] if HAS_APEX else []), line_names=['Triton', 'Torch'] + (['Apex'] if HAS_APEX else []), styles=[('blue', '-'), ('green', '-'), ('orange', '-')], ylabel='GB/s', plot_name='layer-norm', args={'M': 4096, 'dtype': torch.float16, 'mode': 'forward'} ) ) def bench_layer_norm(M, N, dtype, provider, mode, eps=1e-5, device='cuda'): # create data x_shape = (M, N) w_shape = (x_shape[-1], ) weight = torch.rand(w_shape, dtype=dtype, device='cuda', requires_grad=True) bias = torch.rand(w_shape, dtype=dtype, device='cuda', requires_grad=True) x = -2.3 + 0.5 * torch.randn(x_shape, dtype=dtype, device='cuda') dy = .1 * torch.randn_like(x) x.requires_grad_(True) # utility functions if provider == 'triton': y_fwd = lambda: layer_norm(x, w_shape, weight, bias, eps) if provider == 'torch': y_fwd = lambda: torch.nn.functional.layer_norm(x, w_shape, weight, bias, eps) if provider == 'apex': apex_layer_norm = apex.normalization.FusedLayerNorm(w_shape).to(x.device).to(x.dtype) y_fwd = lambda: apex_layer_norm(x) # forward pass if mode == 'forward': gbps = lambda ms: 2 * x.numel() * x.element_size() / ms * 1e-6 ms, min_ms, max_ms = triton.testing.do_bench(y_fwd, rep=500) # backward pass if mode == 'backward': gbps = lambda ms: 3 * x.numel() * x.element_size() / ms * 1e-6 y = y_fwd() ms, min_ms, max_ms = triton.testing.do_bench(lambda: y.backward(dy, retain_graph=True), grad_to_none=[x], rep=500) return gbps(ms), gbps(max_ms), gbps(min_ms) # test_layer_norm(1151, 8192, torch.float16) bench_layer_norm.run(save_path='.', print_data=True) .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 5 minutes 38.066 seconds) .. _sphx_glr_download_getting-started_tutorials_05-layer-norm.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: 05-layer-norm.py <05-layer-norm.py>` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: 05-layer-norm.ipynb <05-layer-norm.ipynb>` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_