#include #include #include #include #include #include #include #include "triton/codegen/analysis/axes.h" #include "triton/codegen/analysis/allocation.h" #include "triton/codegen/analysis/liveness.h" #include "triton/codegen/analysis/align.h" #include "triton/codegen/analysis/swizzle.h" #include "triton/codegen/transform/coalesce.h" #include "triton/codegen/transform/dce.h" #include "triton/codegen/transform/peephole.h" #include "triton/codegen/transform/membar.h" #include "triton/codegen/transform/reassociate.h" #include "triton/codegen/transform/reorder.h" #include "triton/codegen/transform/cts.h" #include "triton/codegen/transform/disassociate.h" #include "triton/codegen/selection/generator.h" #include "triton/runtime/function.h" #include "triton/lang/cpp.h" #include "triton/lang/parser.h" #include "triton/lang/code_gen.h" #include "triton/driver/device.h" #include "triton/driver/stream.h" #include "triton/driver/kernel.h" #include "triton/driver/module.h" #include "triton/driver/error.h" #include "triton/ir/module.h" #include "triton/ir/function.h" #include "triton/ir/print.h" #include "triton/runtime/error.h" #include "triton/tools/bench.hpp" #include "triton/tools/sha1.hpp" #include "triton/tools/sys/getenv.hpp" #include "triton/tools/sys/mkdir.hpp" #include "llvm/IR/Module.h" #include #include std::mutex mut; namespace triton{ namespace runtime { /* --------------------------------- */ /* --------------------------------- */ /* --------------------------------- */ arg_type kernel::convert(ir::type *ty) { if(ty->is_integer_ty(1)) return INT1_T; if(ty->is_integer_ty(8)) return INT8_T; if(ty->is_integer_ty(16)) return INT16_T; if(ty->is_integer_ty(32)) return INT32_T; if(ty->is_integer_ty(64)) return INT64_T; if(ty->is_half_ty()) return HALF_T; if(ty->is_float_ty()) return FLOAT_T; if(ty->is_double_ty()) return DOUBLE_T; if(ty->is_pointer_ty()) return BUFFER_T; throw std::runtime_error("unknown type"); } std::string kernel::preheader() { return R"( #define bool _Bool #define true 1 #define false 0 #define __readonly __attribute__((readonly)) #define __writeonly __attribute__((writeonly)) #define __noalias __attribute__((noalias)) #define __aligned(A) __attribute__((aligned(A))) #define __multipleof(A) __attribute__((multipleof(A))) #define __retune __attribute__((retune)) #define F32_INFINITY bitcast(0x7F800000) #define F16_INFINITY bitcast((int16)0x7C00) #define min(a,b) (((a)<(b))?(a):(b)) #define max(a,b) (((a)>(b))?(a):(b)) #define PASTER(a, b, _) a ## _ ## b #define EVALUATOR(a, b, _) PASTER(a, b, _) #define atomic_add(TYPE, TM, TN) EVALUATOR(atomic_add, EVALUATOR(TYPE, EVALUATOR(TM, TN, x), _), _) #define DECLARATION(TYPE, TM, TN) extern void atomic_add(TYPE, TM, TN)(TYPE*[TM, TN], TYPE[TM, TN], bool[TM, TN]) DECLARATION(float, 64, 64); DECLARATION(float, 64, 128); DECLARATION(float, 128, 64); DECLARATION(float, 128, 128); extern void atomic_add_half_1x1(half*, half, bool); DECLARATION(half , 64, 64); DECLARATION(half , 64, 128); DECLARATION(half , 128, 64); DECLARATION(half , 128, 128); extern void atomic_add_float_1x1(float*, float, bool); extern int atomic_cas(int*, int, int); extern int atomic_xchg(int*, int); extern int get_program_id(int); extern int get_num_programs(int); extern int select(bool, int, int); extern char __constant__ * calloc(int); typedef unsigned char uint8; typedef unsigned short uint16; typedef unsigned int uint32; typedef unsigned long uint64; typedef char int8; typedef short int16; typedef int int32; typedef long int64; )"; } void kernel::init_ir(const std::string& src) { // pre-process TokenSequence tokens; Preprocessor cpp(&src, true); for(auto it: opt.defines) cpp.AddMacro(it.first, &it.second); cpp.Process(tokens); // src -> ast Parser parser(tokens); parser.Parse(); // ast -> triton-ir ir::module* module = new ir::module("", ctx_); Generator gen(&parser); gen.Gen(module); ir_.reset(module); } void kernel::init_ker(){ // triton-ir -> binary std::unique_ptr bin; std::unique_ptr target = dev_->make_target(); // generate llvm code llvm::LLVMContext ctx; std::string name = ir_->get_function_list()[0]->get_name(); std::unique_ptr llvm(new llvm::Module(name, ctx)); // optimizations bool cts_use_async = target->as_nvidia()->sm() >= 80; // create passes codegen::analysis::align align; codegen::analysis::axes axes; codegen::transform::cts cts(cts_use_async); codegen::transform::disassociate disassociate; codegen::analysis::layouts layouts(&axes, &align, opt.num_warps, target.get()); codegen::analysis::liveness liveness(&layouts); codegen::analysis::swizzle swizzle(&layouts, target.get()); codegen::analysis::allocation allocation(&liveness); codegen::transform::membar barriers(&liveness, &layouts, &allocation); codegen::transform::dce dce; codegen::transform::peephole peephole(target.get()); codegen::transform::reassociate reassociate; codegen::transform::coalesce coalesce(&align, &layouts); codegen::generator isel(&axes, &layouts, &align, &allocation, &swizzle, target.get(), opt.num_warps); // run passes dce.run(*ir_); disassociate.run(*ir_); dce.run(*ir_); peephole.run(*ir_); dce.run(*ir_); align.run(*ir_); if(target->is_gpu()) cts.run(*ir_); axes.run(*ir_); layouts.run(*ir_); coalesce.run(*ir_); dce.run(*ir_); align.run(*ir_); dce.run(*ir_); if(target->is_gpu()){ reassociate.run(*ir_); cts.run(*ir_); } peephole.run(*ir_); dce.run(*ir_); align.run(*ir_); axes.run(*ir_); layouts.run(*ir_); swizzle.run(*ir_); liveness.run(*ir_); allocation.run(*ir_); if(allocation.allocated_size() > dev_->max_shared_memory()) throw exception::out_of_shared_memory(); barriers.run(*ir_); isel.visit(*ir_, *llvm); //if(res->spilled() > 256) // throw exception::out_of_registers(); mod_.reset(driver::module::create(dev_, std::move(llvm))); ker_.reset(driver::kernel::create(&*mod_, name.c_str())); } void kernel::init_sig() { ir::function* fn = ir_->get_function_list()[0]; ir::function_type* ty = fn->get_fn_type(); for(size_t i = 0; i < ty->get_num_params(); i++){ sig_.push_back(convert(ty->get_param_ty(i))); if(!fn->has_attr(i+1)) continue; } } kernel::kernel(const std::string& src, const options_t& opt, driver::device *dev): opt(opt), dev_(dev) { init_ir(preheader() + src); init_ker(); init_sig(); } void kernel::operator()(void *args, size_t args_size, driver::stream *stream, const std::vector& _grid) const{ // set grid if(_grid.size() > 3) throw std::runtime_error("grid size must be no greater than 3"); std::array grid; for(size_t i = 0; i < 3; i++) grid[i] = (i < _grid.size()) ? _grid[i] : 1; // enqueue stream->enqueue(&*ker_, grid, {opt.num_warps * 32, 1, 1}, args, args_size); } /* --------------------------------- */ /* --------------------------------- */ /* --------------------------------- */ void function::do_loop_nest(std::vector const & ranges, std::function const &)> const & f){ size_t D = ranges.size(); std::vector values(D, 0); size_t i = D - 1; while(true){ f(values); while(values[i]++ == ranges[i] - 1){ if(i == 0) return; values[i--] = 0; } i = D - 1; } } void function::init_kernels(const std::string& src, const options_space_t& opts, driver::device *device) { // all ranges std::vector ranges; ranges.push_back(opts.num_warps.size()); for(const auto& x: opts.defines) ranges.push_back(x.second.size()); // functor for source with given option std::vector> err; auto do_make = [&](std::vector params) { // compilation options unsigned i = 0; options_t opt; opt.num_warps = opts.num_warps[params[i++]]; for(auto D: opts.defines) opt.defines[D.first] = D.second[params[i++]]; // compile try{ kernels_.push_back({opt, std::make_shared(src, opt, device)}); }catch(const exception::base& e){ err.push_back({opt, e.what()}); } }; // multi-threaded compilation do_loop_nest(ranges, do_make); if(kernels_.empty()){ std::ostringstream dbg; dbg << "Auto-Tuner could not find any valid configuration:" << std::endl; for(auto x: err){ dbg << "[ "; dbg << x.first.num_warps << ", "; dbg << "{ "; for(const auto& y: x.first.defines) dbg << '"' << y.first << "\"= \"" << y.second << "\", "; dbg << " } ] -> " << x.second << std::endl; } throw exception::no_valid_configuration(dbg.str()); } } kernel* function::autotune(void* args, size_t args_size, const grid_fn_ty& grid_fn, driver::stream* stream) { // fast path -- no autotuning necessary if(kernels_.size() == 1) return &*kernels_.begin()->second; // auto-tuning key std::vector key; auto it = cache_.find(key); if(it != cache_.end()) return it->second; // run auto-tuner double best_ts = INFINITY; kernel* ret = nullptr; for(auto &x : kernels_){ kernel* current = &*x.second; auto grid = grid_fn(x.first); while(grid.size() < 3) grid.push_back(1); double ts = tools::bench([&]() { (*current)(args, args_size, stream, grid); }, stream, true); ret = (ts < best_ts) ? current : ret; best_ts = std::min(ts, best_ts); } stream->synchronize(); it = cache_.insert({key, ret}).first; return it->second; } function::function(const std::string& src, const options_space_t& opt, driver::device *device) { init_kernels(src, opt, device); } void function::operator()(void* args, size_t args_size, const grid_fn_ty& grid_fn, driver::stream *stream) { runtime::kernel* fn = autotune(args, args_size, grid_fn, stream); (*fn)(args, args_size, stream, grid_fn(fn->opt)); } void function::operator()(void* args, size_t args_size, const grid_t& grid, driver::stream* stream) { return this->operator()(args, args_size, [&grid](const options_t&){ return grid; }, stream); } } }