#include #include #include #include #include "isaac/types.h" #include "isaac/array.h" #include #include "isaac/model/model.h" #include "isaac/symbolic/expression.h" #include "isaac/symbolic/preset.h" namespace isaac { namespace detail { typedef std::vector > breakpoints_t; inline bool is_mmprod(expression_type x) { return x==MATRIX_PRODUCT_NN_TYPE || x==MATRIX_PRODUCT_NT_TYPE || x==MATRIX_PRODUCT_TN_TYPE || x==MATRIX_PRODUCT_TT_TYPE; } inline bool is_mvprod(expression_type x) { return x==ROW_WISE_REDUCTION_TYPE || x==COL_WISE_REDUCTION_TYPE; } inline bool has_temporary_impl(op_element op, expression_type expression, expression_type other, bool is_first) { bool result = false; switch(op.type_family) { case OPERATOR_UNARY_TYPE_FAMILY: case OPERATOR_BINARY_TYPE_FAMILY: result |= is_mmprod(expression) || (result |= expression==ROW_WISE_REDUCTION_TYPE && other==COL_WISE_REDUCTION_TYPE) || (result |= expression==COL_WISE_REDUCTION_TYPE && other==ROW_WISE_REDUCTION_TYPE); break; case OPERATOR_VECTOR_REDUCTION_TYPE_FAMILY: result |= is_mvprod(expression) || expression==REDUCTION_TYPE; break; case OPERATOR_ROWS_REDUCTION_TYPE_FAMILY: result |= is_mmprod(expression) || is_mvprod(expression) || expression==REDUCTION_TYPE; break; case OPERATOR_COLUMNS_REDUCTION_TYPE_FAMILY: result |= is_mmprod(expression) || is_mvprod(expression) || expression==REDUCTION_TYPE; break; case OPERATOR_MATRIX_PRODUCT_TYPE_FAMILY: result |= (is_mmprod(expression) && !is_first) || is_mvprod(expression) || expression==REDUCTION_TYPE; break; default: break; } return result; } inline std::pair has_temporary(op_element op, expression_type left, expression_type right, bool is_first) { bool has_temporary_left = has_temporary_impl(op, left, right, is_first); bool has_temporary_right = has_temporary_impl(op, right, left, is_first); return std::make_pair(has_temporary_left, has_temporary_right); } inline expression_type merge(op_element op, expression_type left, expression_type right) { switch(op.type_family) { case OPERATOR_UNARY_TYPE_FAMILY: if(is_mmprod(left)) return MATRIX_AXPY_TYPE; return left; case OPERATOR_BINARY_TYPE_FAMILY: if(left == ROW_WISE_REDUCTION_TYPE || right == ROW_WISE_REDUCTION_TYPE) return ROW_WISE_REDUCTION_TYPE; else if(left == COL_WISE_REDUCTION_TYPE || right == COL_WISE_REDUCTION_TYPE) return COL_WISE_REDUCTION_TYPE; else if(left == REDUCTION_TYPE || right == REDUCTION_TYPE) return REDUCTION_TYPE; else if(left == VECTOR_AXPY_TYPE || right == VECTOR_AXPY_TYPE) return op.type==OPERATOR_OUTER_PROD_TYPE?MATRIX_AXPY_TYPE:VECTOR_AXPY_TYPE; else if(left == MATRIX_AXPY_TYPE || right == MATRIX_AXPY_TYPE) return MATRIX_AXPY_TYPE; else if(is_mmprod(left) || is_mmprod(right)) return MATRIX_AXPY_TYPE; std::cout << left << " " << right << std::endl; throw; case OPERATOR_VECTOR_REDUCTION_TYPE_FAMILY: return REDUCTION_TYPE; case OPERATOR_ROWS_REDUCTION_TYPE_FAMILY: return ROW_WISE_REDUCTION_TYPE; case OPERATOR_COLUMNS_REDUCTION_TYPE_FAMILY: return COL_WISE_REDUCTION_TYPE; case OPERATOR_MATRIX_PRODUCT_TYPE_FAMILY: if(op.type==OPERATOR_MATRIX_PRODUCT_NN_TYPE) return MATRIX_PRODUCT_NN_TYPE; else if(op.type==OPERATOR_MATRIX_PRODUCT_TN_TYPE) return MATRIX_PRODUCT_TN_TYPE; else if(op.type==OPERATOR_MATRIX_PRODUCT_NT_TYPE) return MATRIX_PRODUCT_NT_TYPE; else return MATRIX_PRODUCT_TT_TYPE; default: throw; } } /** @brief Parses the breakpoints for a given expression tree */ static void parse(array_expression::container_type&array, size_t idx, breakpoints_t & breakpoints, expression_type & final_type, bool is_first = true) { array_expression::node & node = array[idx]; //Left expression_type type_left = INVALID_EXPRESSION_TYPE; if (node.lhs.type_family == COMPOSITE_OPERATOR_FAMILY) parse(array, node.lhs.node_index, breakpoints, type_left, false); else if(node.lhs.subtype == DENSE_ARRAY_TYPE) { if(node.lhs.array->nshape()==1) type_left = VECTOR_AXPY_TYPE; else type_left = MATRIX_AXPY_TYPE; } //Right expression_type type_right = INVALID_EXPRESSION_TYPE; if (node.rhs.type_family == COMPOSITE_OPERATOR_FAMILY) parse(array, node.rhs.node_index, breakpoints, type_right, false); else if(node.rhs.subtype == DENSE_ARRAY_TYPE) { if(node.rhs.array->nshape()==1) type_right = VECTOR_AXPY_TYPE; else type_right = MATRIX_AXPY_TYPE; } final_type = merge(array[idx].op, type_left, type_right); std::pair tmp = has_temporary(array[idx].op, type_left, type_right, is_first); if(tmp.first) breakpoints.push_back(std::make_pair(type_left, &array[idx].lhs)); if(tmp.second) breakpoints.push_back(std::make_pair(type_right, &array[idx].rhs)); } } /** @brief Executes a array_expression on the given models map*/ void execute(controller const & c, model_map_t & models) { array_expression expression = c.x(); driver::Context const & context = expression.context(); size_t rootidx = expression.root(); array_expression::container_type & tree = const_cast(expression.tree()); array_expression::node root_save = tree[rootidx]; //Todo: technically the datatype should be per temporary numeric_type dtype = root_save.lhs.dtype; expression_type final_type; //GEMM if(symbolic::preset::gemm::args args = symbolic::preset::gemm::check(tree, rootidx)){ final_type = args.type; } //Default else { detail::breakpoints_t breakpoints; breakpoints.reserve(8); //Init expression_type current_type; if(root_save.lhs.array->nshape()==0) current_type = SCALAR_AXPY_TYPE; else if(root_save.lhs.array->nshape()==1) current_type=VECTOR_AXPY_TYPE; else current_type=MATRIX_AXPY_TYPE; final_type = current_type; /*----Parse required temporaries-----*/ detail::parse(tree, rootidx, breakpoints, final_type); std::vector > temporaries_; /*----Compute required temporaries----*/ for(detail::breakpoints_t::iterator it = breakpoints.begin() ; it != breakpoints.end() ; ++it) { tools::shared_ptr const & pmodel = models[std::make_pair(it->first, dtype)]; array_expression::node const & node = tree[it->second->node_index]; array_expression::node const & lmost = lhs_most(tree, node); //Creates temporary tools::shared_ptr tmp; switch(it->first){ case SCALAR_AXPY_TYPE: case REDUCTION_TYPE: tmp = tools::shared_ptr(new array(1, dtype, context)); break; case VECTOR_AXPY_TYPE: tmp = tools::shared_ptr(new array(lmost.lhs.array->shape()[0], dtype, context)); break; case ROW_WISE_REDUCTION_TYPE: tmp = tools::shared_ptr(new array(lmost.lhs.array->shape()[0], dtype, context)); break; case COL_WISE_REDUCTION_TYPE: tmp = tools::shared_ptr(new array(lmost.lhs.array->shape()[1], dtype, context)); break; case MATRIX_AXPY_TYPE: tmp = tools::shared_ptr(new array(lmost.lhs.array->shape()[0], lmost.lhs.array->shape()[1], dtype, context)); break; case MATRIX_PRODUCT_NN_TYPE: tmp = tools::shared_ptr(new array(node.lhs.array->shape()[0], node.rhs.array->shape()[1], dtype, context)); break; case MATRIX_PRODUCT_NT_TYPE: tmp = tools::shared_ptr(new array(node.lhs.array->shape()[0], node.rhs.array->shape()[0], dtype, context)); break; case MATRIX_PRODUCT_TN_TYPE: tmp = tools::shared_ptr(new array(node.lhs.array->shape()[1], node.rhs.array->shape()[1], dtype, context)); break; case MATRIX_PRODUCT_TT_TYPE: tmp = tools::shared_ptr(new array(node.lhs.array->shape()[1], node.rhs.array->shape()[0], dtype, context)); break; default: throw std::invalid_argument("Unrecognized operation"); } temporaries_.push_back(tmp); tree[rootidx].op.type = OPERATOR_ASSIGN_TYPE; fill(tree[rootidx].lhs, (array&)*tmp); tree[rootidx].rhs = *it->second; tree[rootidx].rhs.type_family = it->second->type_family; //Execute pmodel->execute(controller(expression, c.execution_options(), c.dispatcher_options(), c.compilation_options())); tree[rootidx] = root_save; //Incorporates the temporary within the array_expression fill(*it->second, (array&)*tmp); } } /*-----Compute final expression-----*/ models[std::make_pair(final_type, dtype)]->execute(controller(expression, c.execution_options(), c.dispatcher_options(), c.compilation_options())); } }