#include "codegen/allocation.h" #include "codegen/liveness.h" #include "codegen/layout.h" #include "codegen/loop_info.h" #include "ir/basic_block.h" #include "ir/type.h" #include "ir/value.h" #include "ir/function.h" #include "ir/instructions.h" namespace tdl{ namespace codegen{ unsigned allocation::get_num_bytes(ir::value *x) const { ir::type *ty = x->get_type(); unsigned num_elements = ty->get_tile_num_elements(); if(has_double_buffer(x)) num_elements *= 2; return num_elements * ty->get_scalar_ty()->get_size_in_bits(); } void allocation::run(ir::function &fn){ using std::max; using std::min; typedef std::multimap triples_map_type; // Fill double buffering info for(ir::basic_block *block: fn.blocks()) for(ir::instruction *v: block->get_inst_list()) // If requires shared memory if(layout_->get_num_shared_views(v) && loop_info_->get_loop_for(block)) double_buffer_.insert(v); std::vector I; for(auto x: liveness_->intervals()) I.push_back(x.first); std::vector J = I; triples_map_type H; H.insert({0, segment{0, 100}}); std::vector V; std::map starts; while(!J.empty()){ auto h_it = H.begin(); unsigned w = h_it->first; segment xh = h_it->second; H.erase(h_it); auto j_it = std::find_if(J.begin(), J.end(), [&](ir::value *JJ){ segment xj = liveness_->get_interval(JJ); bool res = xj.intersect(xh); for(auto val: H) res = res && !val.second.intersect(xj); return res; }); if(j_it != J.end()){ unsigned size = get_num_bytes(*j_it); segment xj = liveness_->get_interval(*j_it); starts[*j_it] = w; H.insert({w + size, segment{max(xh.start, xj.start), min(xh.end, xj.end)}}); if(xh.start < xj.start) H.insert({w, segment{xh.start, xj.end}}); if(xj.end < xh.end) H.insert({w, segment{xj.start, xh.end}}); V.push_back(*j_it); J.erase(j_it); } } // Build interference graph std::map> interferences; for(ir::value *x: V) for(ir::value *y: V){ if(x == y) continue; unsigned X0 = starts[x], Y0 = starts[y]; unsigned NX = get_num_bytes(x); unsigned NY = get_num_bytes(y); segment XS = {X0, X0 + NX}; segment YS = {Y0, Y0 + NY}; if(liveness_->get_interval(x).intersect(liveness_->get_interval(y)) && XS.intersect(YS)) interferences[x].insert(y); } // Initialize colors std::map colors; for(ir::value *X: V) colors[X] = (X==V[0])?0:-1; // First-fit coloring std::vector available(V.size()); for(ir::value *x: V){ // Non-neighboring colors are available std::fill(available.begin(), available.end(), true); for(ir::value *Y: interferences[x]){ int color = colors[Y]; if(color >= 0) available[color] = false; } // Assigns first available color auto It = std::find(available.begin(), available.end(), true); colors[x] = std::distance(available.begin(), It); } // Finalize allocation for(ir::value *x: V){ unsigned Adj = 0; for(ir::value *y: interferences[x]) Adj = std::max(Adj, starts[y] + get_num_bytes(y)); offsets_[x] = starts[x] + colors[x] * Adj; if(auto *phi = dynamic_cast(x)) for(ir::value *px: phi->ops()){ if(offsets_.find(px) == offsets_.end()) offsets_[px] = offsets_[x]; } } // Save maximum size of induced memory space allocated_size_ = 0; for(auto &x: offsets_) allocated_size_ = std::max(allocated_size_, x.second + get_num_bytes(x.first)); } } }