#blocked0 = #triton_gpu.blocked<{sizePerThread = [1], threadsPerWarp = [32], warpsPerCTA = [4], order = [0]}> #blocked1 = #triton_gpu.blocked<{sizePerThread = [1, 8], threadsPerWarp = [4, 8], warpsPerCTA = [4, 1], order = [1, 0]}> #blocked2 = #triton_gpu.blocked<{sizePerThread = [8, 1], threadsPerWarp = [8, 4], warpsPerCTA = [1, 4], order = [0, 1]}> #mma = #triton_gpu.mma<{versionMajor = 2, versionMinor = 0, warpsPerCTA = [4, 1]}> #mma_s1 = #triton_gpu.slice<{dim = 1, parent = #mma}> #shared0 = #triton_gpu.shared<{vec = 8, perPhase = 1, maxPhase = 8, order = [1, 0]}> #shared1 = #triton_gpu.shared<{vec = 8, perPhase = 1, maxPhase = 8, order = [0, 1]}> module attributes {"triton_gpu.num-warps" = 4 : i32} { func public @_fwd_kernel_0d1d2d34d5d6d7d8d9d10c11d12d13d14c15d16d17d18c19d20d21d22c2324d25d(%arg0: !tt.ptr {tt.divisibility = 16 : i32}, %arg1: !tt.ptr {tt.divisibility = 16 : i32}, %arg2: !tt.ptr {tt.divisibility = 16 : i32}, %arg3: f32, %arg4: !tt.ptr {tt.divisibility = 16 : i32}, %arg5: !tt.ptr {tt.divisibility = 16 : i32}, %arg6: !tt.ptr {tt.divisibility = 16 : i32}, %arg7: i32 {tt.divisibility = 16 : i32}, %arg8: i32 {tt.divisibility = 16 : i32}, %arg9: i32 {tt.divisibility = 16 : i32}, %arg10: i32 {tt.divisibility = 16 : i32}, %arg11: i32 {tt.divisibility = 16 : i32}, %arg12: i32 {tt.divisibility = 16 : i32}, %arg13: i32 {tt.divisibility = 16 : i32}, %arg14: i32 {tt.divisibility = 16 : i32}, %arg15: i32 {tt.divisibility = 16 : i32}, %arg16: i32 {tt.divisibility = 16 : i32}, %arg17: i32 {tt.divisibility = 16 : i32}, %arg18: i32 {tt.divisibility = 16 : i32}, %arg19: i32, %arg20: i32 {tt.divisibility = 16 : i32}, %arg21: i32 {tt.divisibility = 16 : i32}) { %c0_i32 = arith.constant 0 : i32 %cst = arith.constant dense<1.000000e+00> : tensor<128xf32, #triton_gpu.slice<{dim = 1, parent = #mma}>> %cst_0 = arith.constant dense<0.000000e+00> : tensor<128x128xf32, #mma> %cst_1 = arith.constant dense<0xFF800000> : tensor<128x128xf32, #mma> %cst_2 = arith.constant dense<0xFF800000> : tensor<128xf32, #triton_gpu.slice<{dim = 1, parent = #mma}>> %cst_3 = arith.constant dense<0.000000e+00> : tensor<128x64xf32, #mma> %cst_4 = arith.constant dense<0.000000e+00> : tensor<128xf32, #triton_gpu.slice<{dim = 1, parent = #mma}>> %c1_i32 = arith.constant 1 : i32 %c0 = arith.constant 0 : index %c128 = arith.constant 128 : index %c128_i32 = arith.constant 128 : i32 %0 = tt.get_program_id {axis = 0 : i32} : i32 %1 = tt.get_program_id {axis = 1 : i32} : i32 %2 = arith.muli %0, %c128_i32 : i32 %3 = tt.make_range {end = 128 : i32, start = 0 : i32} : tensor<128xi32, #blocked0> %4 = tt.make_range {end = 128 : i32, start = 0 : i32} : tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #blocked1}>> %5 = tt.make_range {end = 128 : i32, start = 0 : i32} : tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #mma}>> %6 = tt.splat %2 : (i32) -> tensor<128xi32, #blocked0> %7 = tt.splat %2 : (i32) -> tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #blocked1}>> %8 = tt.splat %2 : (i32) -> tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #mma}>> %9 = arith.addi %6, %3 : tensor<128xi32, #blocked0> %10 = arith.muli %1, %arg8 : i32 %11 = arith.addi %7, %4 : tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #blocked1}>> %12 = arith.addi %8, %5 : tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #mma}>> %13 = tt.splat %arg9 : (i32) -> tensor<128x1xi32, #blocked1> %14 = tt.splat %10 : (i32) -> tensor<128x1xi32, #blocked1> %15 = tt.make_range {end = 64 : i32, start = 0 : i32} : tensor<64xi32, #triton_gpu.slice<{dim = 0, parent = #blocked1}>> %16 = tt.expand_dims %15 {axis = 0 : i32} : (tensor<64xi32, #triton_gpu.slice<{dim = 0, parent = #blocked1}>>) -> tensor<1x64xi32, #blocked1> %17 = tt.broadcast %16 : (tensor<1x64xi32, #blocked1>) -> tensor<128x64xi32, #blocked1> %18 = tt.make_range {end = 128 : i32, start = 0 : i32} : tensor<128xi32, #triton_gpu.slice<{dim = 0, parent = #blocked2}>> %19 = tt.make_range {end = 128 : i32, start = 0 : i32} : tensor<128xi32, #triton_gpu.slice<{dim = 0, parent = #mma}>> %20 = tt.expand_dims %19 {axis = 0 : i32} : (tensor<128xi32, #triton_gpu.slice<{dim = 0, parent = #mma}>>) -> tensor<1x128xi32, #mma> %21 = tt.splat %arg12 : (i32) -> tensor<1x128xi32, #blocked2> %22 = tt.splat %10 : (i32) -> tensor<1x128xi32, #blocked2> %23 = tt.make_range {end = 64 : i32, start = 0 : i32} : tensor<64xi32, #triton_gpu.slice<{dim = 1, parent = #blocked2}>> %24 = tt.expand_dims %23 {axis = 1 : i32} : (tensor<64xi32, #triton_gpu.slice<{dim = 1, parent = #blocked2}>>) -> tensor<64x1xi32, #blocked2> %25 = tt.expand_dims %18 {axis = 0 : i32} : (tensor<128xi32, #triton_gpu.slice<{dim = 0, parent = #blocked2}>>) -> tensor<1x128xi32, #blocked2> %26 = arith.muli %25, %21 : tensor<1x128xi32, #blocked2> %27 = arith.addi %22, %26 : tensor<1x128xi32, #blocked2> %28 = tt.broadcast %27 : (tensor<1x128xi32, #blocked2>) -> tensor<64x128xi32, #blocked2> %29 = tt.splat %arg0 : (!tt.ptr) -> tensor<128x64x!tt.ptr, #blocked1> %30 = tt.splat %arg1 : (!tt.ptr) -> tensor<64x128x!tt.ptr, #blocked2> %31 = tt.splat %arg2 : (!tt.ptr) -> tensor<128x64x!tt.ptr, #blocked1> %32 = tt.expand_dims %11 {axis = 1 : i32} : (tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #blocked1}>>) -> tensor<128x1xi32, #blocked1> %33 = arith.muli %32, %13 : tensor<128x1xi32, #blocked1> %34 = arith.addi %14, %33 : tensor<128x1xi32, #blocked1> %35 = tt.broadcast %34 : (tensor<128x1xi32, #blocked1>) -> tensor<128x64xi32, #blocked1> %36 = arith.addi %35, %17 : tensor<128x64xi32, #blocked1> %37 = tt.addptr %29, %36 : tensor<128x64x!tt.ptr, #blocked1>, tensor<128x64xi32, #blocked1> %38 = arith.addi %0, %c1_i32 : i32 %39 = arith.muli %38, %c128_i32 : i32 %40 = arith.index_cast %39 : i32 to index %41 = tt.splat %arg3 : (f32) -> tensor<128x128xf32, #mma> %42 = tt.expand_dims %12 {axis = 1 : i32} : (tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #mma}>>) -> tensor<128x1xi32, #mma> %43 = tt.broadcast %42 : (tensor<128x1xi32, #mma>) -> tensor<128x128xi32, #mma> %44 = arith.muli %arg12, %c128_i32 : i32 %45 = tt.splat %44 : (i32) -> tensor<64x128xi32, #blocked2> %46 = arith.muli %arg15, %c128_i32 : i32 %47 = tt.splat %46 : (i32) -> tensor<128x64xi32, #blocked1> %48 = tt.broadcast %24 : (tensor<64x1xi32, #blocked2>) -> tensor<64x128xi32, #blocked2> %49 = arith.addi %28, %48 : tensor<64x128xi32, #blocked2> %50 = tt.addptr %30, %49 : tensor<64x128x!tt.ptr, #blocked2>, tensor<64x128xi32, #blocked2> %51 = tt.expand_dims %4 {axis = 1 : i32} : (tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #blocked1}>>) -> tensor<128x1xi32, #blocked1> %52 = arith.muli %51, %13 : tensor<128x1xi32, #blocked1> %53 = arith.addi %14, %52 : tensor<128x1xi32, #blocked1> %54 = tt.broadcast %53 : (tensor<128x1xi32, #blocked1>) -> tensor<128x64xi32, #blocked1> %55 = arith.addi %54, %17 : tensor<128x64xi32, #blocked1> %56 = tt.addptr %31, %55 : tensor<128x64x!tt.ptr, #blocked1>, tensor<128x64xi32, #blocked1> %79 = triton_gpu.alloc_tensor : tensor<1x128x64xf16, #shared0> // TODO: Load should be transformed into `insert_slice_async + extract_slice` at the very end of the optimization pass so it benefits from LICM %80 = triton_gpu.insert_slice_async %37, %79, %c0_i32 {axis = 0 : i32, cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<128x64x!tt.ptr, #blocked1> -> tensor<1x128x64xf16, #shared0> triton_gpu.async_wait {num = 0 : i32} %81 = tensor.extract_slice %80[0, 0, 0] [1, 128, 64] [1, 1, 1] : tensor<1x128x64xf16, #shared0> to tensor<128x64xf16, #shared0> %82 = triton_gpu.convert_layout %81 : (tensor<128x64xf16, #shared0>) -> tensor<128x64xf16, #triton_gpu.dot_op<{opIdx = 0, parent = #mma}>> %57:5 = scf.for %arg22 = %c0 to %40 step %c128 iter_args(%arg23 = %cst_4, %arg24 = %cst_3, %arg25 = %cst_2, %arg26 = %50, %arg27 = %56) -> (tensor<128xf32, #triton_gpu.slice<{dim = 1, parent = #mma}>>, tensor<128x64xf32, #mma>, tensor<128xf32, #triton_gpu.slice<{dim = 1, parent = #mma}>>, tensor<64x128x!tt.ptr, #blocked2>, tensor<128x64x!tt.ptr, #blocked1>) { %78 = arith.index_cast %arg22 : index to i32 %83 = triton_gpu.alloc_tensor : tensor<1x64x128xf16, #shared1> %84 = triton_gpu.insert_slice_async %arg26, %83, %c0_i32 {axis = 0 : i32, cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<64x128x!tt.ptr, #blocked2> -> tensor<1x64x128xf16, #shared1> triton_gpu.async_wait {num = 0 : i32} %85 = tensor.extract_slice %84[0, 0, 0] [1, 64, 128] [1, 1, 1] : tensor<1x64x128xf16, #shared1> to tensor<64x128xf16, #shared1> %86 = triton_gpu.convert_layout %85 : (tensor<64x128xf16, #shared1>) -> tensor<64x128xf16, #triton_gpu.dot_op<{opIdx = 1, parent = #mma}>> %87 = tt.dot %82, %86, %cst_0 {allowTF32 = true} : tensor<128x64xf16, #triton_gpu.dot_op<{opIdx = 0, parent = #mma}>> * tensor<64x128xf16, #triton_gpu.dot_op<{opIdx = 1, parent = #mma}>> -> tensor<128x128xf32, #mma> %88 = tt.splat %78 : (i32) -> tensor<1x128xi32, #mma> %89 = arith.addi %88, %20 : tensor<1x128xi32, #mma> %90 = tt.broadcast %89 : (tensor<1x128xi32, #mma>) -> tensor<128x128xi32, #mma> %91 = arith.mulf %87, %41 : tensor<128x128xf32, #mma> %92 = "triton_gpu.cmpi"(%43, %90) {predicate = 5 : i64} : (tensor<128x128xi32, #mma>, tensor<128x128xi32, #mma>) -> tensor<128x128xi1, #mma> %93 = "triton_gpu.select"(%92, %91, %cst_1) : (tensor<128x128xi1, #mma>, tensor<128x128xf32, #mma>, tensor<128x128xf32, #mma>) -> tensor<128x128xf32, #mma> %94 = tt.reduce %93 {axis = 1 : i32, redOp = 12 : i32} : tensor<128x128xf32, #mma> -> tensor<128xf32, #triton_gpu.slice<{dim = 1, parent = #mma}>> %95 = "triton_gpu.cmpf"(%94, %arg25) {predicate = 2 : i64} : (tensor<128xf32, #triton_gpu.slice<{dim = 1, parent = #mma}>>, tensor<128xf32, #triton_gpu.slice<{dim = 1, parent = #mma}>>) -> tensor<128xi1, #triton_gpu.slice<{dim = 1, parent = #mma}>> %96 = "triton_gpu.select"(%95, %94, %arg25) : (tensor<128xi1, #triton_gpu.slice<{dim = 1, parent = #mma}>>, tensor<128xf32, #triton_gpu.slice<{dim = 1, parent = #mma}>>, tensor<128xf32, #triton_gpu.slice<{dim = 1, parent = #mma}>>) -> tensor<128xf32, #triton_gpu.slice<{dim = 1, parent = #mma}>> %97 = tt.expand_dims %96 {axis = 1 : i32} : (tensor<128xf32, #triton_gpu.slice<{dim = 1, parent = #mma}>>) -> tensor<128x1xf32, #mma> %98 = tt.broadcast %97 : (tensor<128x1xf32, #mma>) -> tensor<128x128xf32, #mma> %99 = arith.subf %93, %98 : tensor<128x128xf32, #mma> %100 = math.exp %99 : tensor<128x128xf32, #mma> %101 = tt.reduce %100 {axis = 1 : i32, redOp = 2 : i32} : tensor<128x128xf32, #mma> -> tensor<128xf32, #triton_gpu.slice<{dim = 1, parent = #mma}>> %102 = arith.subf %arg25, %96 : tensor<128xf32, #triton_gpu.slice<{dim = 1, parent = #mma}>> %103 = math.exp %102 : tensor<128xf32, #triton_gpu.slice<{dim = 1, parent = #mma}>> %104 = arith.mulf %arg23, %103 : tensor<128xf32, #triton_gpu.slice<{dim = 1, parent = #mma}>> %105 = arith.addf %101, %104 : tensor<128xf32, #triton_gpu.slice<{dim = 1, parent = #mma}>> %106 = arith.divf %cst, %105 : tensor<128xf32, #triton_gpu.slice<{dim = 1, parent = #mma}>> %107 = arith.mulf %104, %106 : tensor<128xf32, #triton_gpu.slice<{dim = 1, parent = #mma}>> %108 = tt.expand_dims %107 {axis = 1 : i32} : (tensor<128xf32, #triton_gpu.slice<{dim = 1, parent = #mma}>>) -> tensor<128x1xf32, #mma> %109 = tt.broadcast %108 : (tensor<128x1xf32, #mma>) -> tensor<128x64xf32, #mma> %110 = arith.mulf %arg24, %109 : tensor<128x64xf32, #mma> %111 = tt.expand_dims %106 {axis = 1 : i32} : (tensor<128xf32, #triton_gpu.slice<{dim = 1, parent = #mma}>>) -> tensor<128x1xf32, #mma> %112 = tt.broadcast %111 : (tensor<128x1xf32, #mma>) -> tensor<128x128xf32, #mma> %113 = arith.mulf %100, %112 : tensor<128x128xf32, #mma> %114 = arith.truncf %113 : tensor<128x128xf32, #mma> to tensor<128x128xf16, #mma> %115 = triton_gpu.convert_layout %114 : (tensor<128x128xf16, #mma>) -> tensor<128x128xf16, #triton_gpu.dot_op<{opIdx = 0, parent = #mma}>> %116 = triton_gpu.alloc_tensor : tensor<1x128x64xf16, #shared0> %117 = triton_gpu.insert_slice_async %arg27, %116, %c0_i32 {axis = 0 : i32, cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<128x64x!tt.ptr, #blocked1> -> tensor<1x128x64xf16, #shared0> triton_gpu.async_wait {num = 0 : i32} %118 = tensor.extract_slice %117[0, 0, 0] [1, 128, 64] [1, 1, 1] : tensor<1x128x64xf16, #shared0> to tensor<128x64xf16, #shared0> %119 = triton_gpu.convert_layout %118 : (tensor<128x64xf16, #shared0>) -> tensor<128x64xf16, #triton_gpu.dot_op<{opIdx = 1, parent = #mma}>> %120 = tt.dot %115, %119, %110 {allowTF32 = true} : tensor<128x128xf16, #triton_gpu.dot_op<{opIdx = 0, parent = #mma}>> * tensor<128x64xf16, #triton_gpu.dot_op<{opIdx = 1, parent = #mma}>> -> tensor<128x64xf32, #mma> %121 = tt.addptr %arg26, %45 : tensor<64x128x!tt.ptr, #blocked2>, tensor<64x128xi32, #blocked2> %122 = tt.addptr %arg27, %47 : tensor<128x64x!tt.ptr, #blocked1>, tensor<128x64xi32, #blocked1> scf.yield %105, %120, %96, %121, %122 : tensor<128xf32, #triton_gpu.slice<{dim = 1, parent = #mma}>>, tensor<128x64xf32, #mma>, tensor<128xf32, #triton_gpu.slice<{dim = 1, parent = #mma}>>, tensor<64x128x!tt.ptr, #blocked2>, tensor<128x64x!tt.ptr, #blocked1> } %203 = tt.make_range {end = 128 : i32, start = 0 : i32} : tensor<128xi32, #mma_s1> %206 = tt.splat %2 : (i32) -> tensor<128xi32, #mma_s1> %209 = arith.addi %206, %203 : tensor<128xi32, #mma_s1> %61 = arith.muli %1, %arg21 : i32 %62 = tt.addptr %arg4, %61 : !tt.ptr, i32 %63 = tt.splat %62 : (!tt.ptr) -> tensor<128x!tt.ptr, #mma_s1> %64 = tt.addptr %63, %209 : tensor<128x!tt.ptr, #mma_s1>, tensor<128xi32, #mma_s1> %65 = tt.addptr %arg5, %61 : !tt.ptr, i32 %66 = tt.splat %65 : (!tt.ptr) -> tensor<128x!tt.ptr, #mma_s1> %67 = tt.addptr %66, %209 : tensor<128x!tt.ptr, #mma_s1>, tensor<128xi32, #mma_s1> tt.store %64, %57#0 : tensor<128xf32, #mma_s1> tt.store %67, %57#2 : tensor<128xf32, #mma_s1> %68 = arith.muli %1, %arg17 : i32 %69 = tt.splat %arg18 : (i32) -> tensor<128x1xi32, #blocked1> %70 = tt.splat %68 : (i32) -> tensor<128x1xi32, #blocked1> %71 = tt.splat %arg6 : (!tt.ptr) -> tensor<128x64x!tt.ptr, #blocked1> %72 = arith.muli %32, %69 : tensor<128x1xi32, #blocked1> %73 = arith.addi %70, %72 : tensor<128x1xi32, #blocked1> %74 = tt.broadcast %73 : (tensor<128x1xi32, #blocked1>) -> tensor<128x64xi32, #blocked1> %75 = arith.addi %74, %17 : tensor<128x64xi32, #blocked1> %76 = tt.addptr %71, %75 : tensor<128x64x!tt.ptr, #blocked1>, tensor<128x64xi32, #blocked1> %77 = arith.truncf %57#1 : tensor<128x64xf32, #mma> to tensor<128x64xf16, #mma> // TODO: conversion should be here, not right after the loop %78 = triton_gpu.convert_layout %77 : (tensor<128x64xf16, #mma>) -> tensor<128x64xf16, #blocked1> tt.store %76, %78 : tensor<128x64xf16, #blocked1> return } }