#include #include "atidlas/backend/templates/reduction.h" #include #include "atidlas/tools/to_string.hpp" #include "atidlas/tools/make_map.hpp" #include "atidlas/tools/make_vector.hpp" namespace atidlas { reduction_parameters::reduction_parameters(unsigned int _simd_width, unsigned int _group_size, unsigned int _num_groups, fetching_policy_type _fetching_policy) : base::parameters_type(_simd_width, _group_size, 1, 2), num_groups(_num_groups), fetching_policy(_fetching_policy) { } unsigned int reduction::lmem_usage(expressions_tuple const & expressions) const { unsigned int res = 0; for(expressions_tuple::data_type::const_iterator it = expressions.data().begin() ; it != expressions.data().end() ; ++it) { numeric_type numeric_t= lhs_most((*it)->tree(), (*it)->root()).lhs.dtype; res += p_.local_size_0*size_of(numeric_t); } return res; } int reduction::check_invalid_impl(cl::Device const &, expressions_tuple const &) const { if (p_.fetching_policy==FETCH_FROM_LOCAL) return TEMPLATE_INVALID_FETCHING_POLICY_TYPE; return TEMPLATE_VALID; } inline void reduction::reduce_1d_local_memory(kernel_generation_stream & stream, unsigned int size, std::vector exprs, std::string const & buf_str, std::string const & buf_value_str) const { stream << "#pragma unroll" << std::endl; stream << "for(unsigned int stride = " << size/2 << "; stride >0; stride /=2)" << std::endl; stream << "{" << std::endl; stream.inc_tab(); stream << "barrier(CLK_LOCAL_MEM_FENCE); " << std::endl; stream << "if (lid < stride)" << std::endl; stream << "{" << std::endl; stream.inc_tab(); for (unsigned int k = 0; k < exprs.size(); k++) if (exprs[k]->is_index_reduction()) compute_index_reduction(stream, exprs[k]->process(buf_str+"[lid]"), exprs[k]->process(buf_str+"[lid+stride]") , exprs[k]->process(buf_value_str+"[lid]"), exprs[k]->process(buf_value_str+"[lid+stride]"), exprs[k]->root_op()); else compute_reduction(stream, exprs[k]->process(buf_str+"[lid]"), exprs[k]->process(buf_str+"[lid+stride]"), exprs[k]->root_op()); stream.dec_tab(); stream << "}" << std::endl; stream.dec_tab(); stream << "}" << std::endl; } std::string reduction::generate_impl(unsigned int label, const char * type, expressions_tuple const & expressions, std::vector const & mappings, unsigned int simd_width) const { kernel_generation_stream stream; std::vector exprs; for (std::vector::const_iterator it = mappings.begin(); it != mappings.end(); ++it) for (mapping_type::const_iterator iit = it->begin(); iit != it->end(); ++iit) if (mapped_scalar_reduction * p = dynamic_cast(iit->second.get())) exprs.push_back(p); std::size_t N = exprs.size(); std::string arguments = "unsigned int N, "; for (unsigned int k = 0; k < N; ++k) { std::string numeric_type = numeric_type_to_string(lhs_most(exprs[k]->array_expression().tree(), exprs[k]->array_expression().root()).lhs.dtype); if (exprs[k]->is_index_reduction()) { arguments += exprs[k]->process("__global unsigned int* #name_temp, "); arguments += exprs[k]->process("__global " + tools::to_string(numeric_type) + "* #name_temp_value, "); } else arguments += exprs[k]->process("__global " + tools::to_string(numeric_type) + "* #name_temp, "); } /* ------------------------ * First Kernel * -----------------------*/ char kprefix[10]; fill_kernel_name(kprefix, label, type); stream << " __attribute__((reqd_work_group_size(" << p_.local_size_0 << ",1,1)))" << std::endl; stream << "__kernel void " << kprefix << "0" << "(" << arguments << generate_arguments("#scalartype", mappings, expressions) << ")" << std::endl; stream << "{" << std::endl; stream.inc_tab(); stream << "unsigned int lid = get_local_id(0);" << std::endl; process(stream, PARENT_NODE_TYPE, tools::make_map >("array0", "#scalartype #namereg = #pointer[#start];") ("array1", "#pointer += #start;"), expressions, mappings); for (unsigned int k = 0; k < N; ++k) { if (exprs[k]->is_index_reduction()) { stream << exprs[k]->process("__local #scalartype #name_buf_value[" + tools::to_string(p_.local_size_0) + "];") << std::endl; stream << exprs[k]->process("#scalartype #name_acc_value = " + neutral_element(exprs[k]->root_op()) + ";") << std::endl; stream << exprs[k]->process("__local unsigned int #name_buf[" + tools::to_string(p_.local_size_0) + "];") << std::endl; stream << exprs[k]->process("unsigned int #name_acc = 0;") << std::endl; } else { stream << exprs[k]->process("__local #scalartype #name_buf[" + tools::to_string(p_.local_size_0) + "];") << std::endl; stream << exprs[k]->process("#scalartype #name_acc = " + neutral_element(exprs[k]->root_op()) + ";") << std::endl; } } class loop_body : public loop_body_base { public: loop_body(std::vector const & _exprs) : exprs(_exprs){ } void operator()(kernel_generation_stream & stream, unsigned int simd_width) const { std::string i = (simd_width==1)?"i*#stride":"i"; //Fetch vector entry for (std::vector::const_iterator it = exprs.begin(); it != exprs.end(); ++it) (*it)->process_recursive(stream, PARENT_NODE_TYPE, tools::make_map >("array1", append_width("#scalartype",simd_width) + " #namereg = " + vload(simd_width,i,"#pointer")+";") ("matrix_row", "#scalartype #namereg = #pointer[$OFFSET{#row*#stride, i*#stride2}];") ("matrix_column", "#scalartype #namereg = #pointer[$OFFSET{i*#stride,#column*#stride2}];") ("matrix_diag", "#scalartype #namereg = #pointer[#diag_offset<0?$OFFSET{(i - #diag_offset)*#stride, i*#stride2}:$OFFSET{i*#stride, (i + #diag_offset)*#stride2}];")); //Update accumulators std::vector str(simd_width); if (simd_width==1) str[0] = "#namereg"; else for (unsigned int a = 0; a < simd_width; ++a) str[a] = append_simd_suffix("#namereg.s", a); for (unsigned int k = 0; k < exprs.size(); ++k) { for (unsigned int a = 0; a < simd_width; ++a) { std::map accessors; accessors["array1"] = str[a]; accessors["matrix_row"] = str[a]; accessors["matrix_column"] = str[a]; accessors["matrix_diag"] = str[a]; accessors["array0"] = "#namereg"; std::string value = exprs[k]->evaluate_recursive(LHS_NODE_TYPE, accessors); if (exprs[k]->is_index_reduction()) compute_index_reduction(stream, exprs[k]->process("#name_acc"), "i*" + tools::to_string(simd_width) + "+" + tools::to_string(a), exprs[k]->process("#name_acc_value"), value,exprs[k]->root_op()); else compute_reduction(stream, exprs[k]->process("#name_acc"), value,exprs[k]->root_op()); } } } private: std::vector exprs; }; element_wise_loop_1D(stream, loop_body(exprs), p_.fetching_policy, simd_width, "i", "N", "get_global_id(0)", "get_global_size(0)"); //Fills local memory for (unsigned int k = 0; k < N; ++k) { if (exprs[k]->is_index_reduction()) stream << exprs[k]->process("#name_buf_value[lid] = #name_acc_value;") << std::endl; stream << exprs[k]->process("#name_buf[lid] = #name_acc;") << std::endl; } //Reduce local memory reduce_1d_local_memory(stream, p_.local_size_0, exprs, "#name_buf", "#name_buf_value"); //Write to temporary buffers stream << "if (lid==0)" << std::endl; stream << "{" << std::endl; stream.inc_tab(); for (unsigned int k = 0; k < N; ++k) { if (exprs[k]->is_index_reduction()) stream << exprs[k]->process("#name_temp_value[get_group_id(0)] = #name_buf_value[0];") << std::endl; stream << exprs[k]->process("#name_temp[get_group_id(0)] = #name_buf[0];") << std::endl; } stream.dec_tab(); stream << "}" << std::endl; stream.dec_tab(); stream << "}" << std::endl; /* ------------------------ * Second kernel * -----------------------*/ stream << " __attribute__((reqd_work_group_size(" << p_.local_size_0 << ",1,1)))" << std::endl; stream << "__kernel void " << kprefix << "1" << "(" << arguments << generate_arguments("#scalartype", mappings, expressions) << ")" << std::endl; stream << "{" << std::endl; stream.inc_tab(); stream << "unsigned int lid = get_local_id(0);" << std::endl; for (unsigned int k = 0; k < N; ++k) { if (exprs[k]->is_index_reduction()) { stream << exprs[k]->process("__local unsigned int #name_buf[" + tools::to_string(p_.local_size_0) + "];"); stream << exprs[k]->process("unsigned int #name_acc = 0;") << std::endl; stream << exprs[k]->process("__local #scalartype #name_buf_value[" + tools::to_string(p_.local_size_0) + "];") << std::endl; stream << exprs[k]->process("#scalartype #name_acc_value = " + neutral_element(exprs[k]->root_op()) + ";"); } else { stream << exprs[k]->process("__local #scalartype #name_buf[" + tools::to_string(p_.local_size_0) + "];") << std::endl; stream << exprs[k]->process("#scalartype #name_acc = " + neutral_element(exprs[k]->root_op()) + ";"); } } stream << "for(unsigned int i = lid; i < " << p_.num_groups << "; i += get_local_size(0))" << std::endl; stream << "{" << std::endl; stream.inc_tab(); for (unsigned int k = 0; k < N; ++k) if (exprs[k]->is_index_reduction()) compute_index_reduction(stream, exprs[k]->process("#name_acc"), exprs[k]->process("#name_temp[i]"), exprs[k]->process("#name_acc_value"),exprs[k]->process("#name_temp_value[i]"),exprs[k]->root_op()); else compute_reduction(stream, exprs[k]->process("#name_acc"), exprs[k]->process("#name_temp[i]"), exprs[k]->root_op()); stream.dec_tab(); stream << "}" << std::endl; for (unsigned int k = 0; k < N; ++k) { if (exprs[k]->is_index_reduction()) stream << exprs[k]->process("#name_buf_value[lid] = #name_acc_value;") << std::endl; stream << exprs[k]->process("#name_buf[lid] = #name_acc;") << std::endl; } //Reduce and write final result reduce_1d_local_memory(stream, p_.local_size_0, exprs, "#name_buf", "#name_buf_value"); stream << "if (lid==0)" << std::endl; stream << "{" << std::endl; stream.inc_tab(); std::map accessors; accessors["scalar_reduction"] = "#name_buf[0]"; accessors["array0"] = "#pointer[#start]"; evaluate(stream, PARENT_NODE_TYPE, accessors, expressions, mappings); stream.dec_tab(); stream << "}" << std::endl; stream.dec_tab(); stream << "}" << std::endl; return stream.str(); } std::vector reduction::generate_impl(unsigned int label, expressions_tuple const & expressions, std::vector const & mappings) const { std::vector result; result.push_back(generate_impl(label, "f", expressions, mappings, 1)); result.push_back(generate_impl(label, "o", expressions, mappings, p_.simd_width)); return result; } reduction::reduction(reduction::parameters_type const & parameters, binding_policy_t binding) : base_impl(parameters, binding) { } reduction::reduction(unsigned int simd, unsigned int ls, unsigned int ng, fetching_policy_type fetch, binding_policy_t bind): base_impl(reduction_parameters(simd,ls,ng,fetch), bind) {} std::vector reduction::input_sizes(expressions_tuple const & expressions) { std::vector reductions_idx = filter_nodes(&is_reduction, *(expressions.data().front()), false); int_t N = vector_size(lhs_most(expressions.data().front()->tree(), reductions_idx[0])); return tools::make_vector() << N; } void reduction::enqueue(cl::CommandQueue & queue, std::vector & programs, unsigned int label, expressions_tuple const & expressions, operation_cache * cache) { //Preprocessing int_t size = input_sizes(expressions)[0]; std::vector reductions; for (expressions_tuple::data_type::const_iterator it = expressions.data().begin(); it != expressions.data().end(); ++it) { std::vector reductions_idx = filter_nodes(&is_reduction, **it, false); for (std::vector::iterator itt = reductions_idx.begin(); itt != reductions_idx.end(); ++itt) reductions.push_back(&(*it)->tree()[*itt]); } //Kernel char kfallback[2][10]; fill_kernel_name(kfallback[0], label, "f0"); fill_kernel_name(kfallback[1], label, "f1"); char kopt[2][10]; fill_kernel_name(kopt[0], label, "o0"); fill_kernel_name(kopt[1], label, "o1"); bool fallback = p_.simd_width > 1 && (requires_fallback(expressions) || (size%p_.simd_width>0)); cl::Program & program = programs[fallback?0:1].program(); cl::Kernel kernels[2] = { cl::Kernel(program, fallback?kfallback[0]:kopt[0]), cl::Kernel(program, fallback?kfallback[1]:kopt[1]) }; //NDRange cl::NDRange grange[2] = { cl::NDRange(p_.local_size_0*p_.num_groups), cl::NDRange(p_.local_size_0) }; cl::NDRange lrange[2] = { cl::NDRange(p_.local_size_0), cl::NDRange(p_.local_size_0) }; //Arguments cl::Context context = expressions.context(); array_expression const & s = *(expressions.data().front()); unsigned int dtype_size = size_of(lhs_most(s.tree(), s.root()).lhs.dtype); for (unsigned int k = 0; k < 2; k++) { unsigned int n_arg = 0; kernels[k].setArg(n_arg++, cl_uint(size)); //Temporary buffers unsigned int i = 0; unsigned int j = 0; for (std::vector::const_iterator it = reductions.begin(); it != reductions.end(); ++it) { if (is_index_reduction((*it)->op)) { if (tmpidx_.size() <= j) tmpidx_.push_back(cl::Buffer(context, CL_MEM_READ_WRITE, p_.num_groups*4)); kernels[k].setArg(n_arg++, tmpidx_[j]); j++; } if (tmp_.size() <= i) tmp_.push_back(cl::Buffer(context, CL_MEM_READ_WRITE, p_.num_groups*dtype_size)); kernels[k].setArg(n_arg++, tmp_[i]); i++; } set_arguments(expressions, kernels[k], n_arg); } for (unsigned int k = 0; k < 2; k++) queue.enqueueNDRangeKernel(kernels[k], cl::NullRange, grange[k], lrange[k]); if(cache) for (unsigned int k = 0; k < 2; k++) cache->push_back(queue, kernels[k], cl::NullRange, grange[k], lrange[k]); } template class base_impl; }