#include #include #include "common.hpp" #include "triton/jit.h" #include "triton/driver/backend.h" #include "triton/driver/stream.h" const char* src = R"( const tunable int32 TM = {16, 32, 64, 128}; const tunable int32 TN = {16, 32, 64, 128}; const tunable int32 TK = {8}; const tunable int32 GZ = {1}; void matmul(restrict read_only fp32 *A, restrict read_only fp32 *B, fp32 *C, int32 M, int32 N, int32 K, int32 lda, int32 ldb, int32 ldc, int32 *locks, int32 grid0, int32 grid1) { int32 rxa[TM] = get_global_range[TM](0); int32 ryb[TN] = get_global_range[TN](1); int32 rz = get_global_range[1](2); int32 rka[TK] = 0 ... TK; int32 rkb[TK] = 0 ... TK; fp32 c[TM, TN] = 0; int32 div = K / GZ; int32 rem = K % GZ; K = select(rz < rem, div - 1, div); int32 offk = select(rz < rem, rz*(div + 1), rz*div + rem); fp32* pa[TM, TK] = A + (offk + rka[newaxis, :])*lda + rxa[:, newaxis]; fp32* pb[TN, TK] = B + (offk + rkb[newaxis, :])*ldb + ryb[:, newaxis]; fp32 a[TM, TK] = *pa; fp32 b[TN, TK] = *pb; int32 last_a = ((M*K - 1) - (TM*TK + 1)) / lda; int32 last_b = ((K*N - 1) - (TN*TK + 1)) / ldb; last_a = last_a / TK * TK; last_b = last_b / TK * TK; int32 bound = K - max(last_a, last_b); for(int32 k = K; k > bound; k = k - TK){ c = dot(a, trans(b), c); pa = pa + TK*lda; pb = pb + TK*ldb; a = *pa; b = *pb; } int32 rxc[TM] = get_global_range[TM](0); int32 ryc[TN] = get_global_range[TN](1); for(int32 k = bound; k > 0; k = k - 1){ int1 checka[TM, 1] = rxc[:, newaxis] < M; int1 checkb[TN, 1] = ryc[:, newaxis] < N; fp32* pa[TM, 1] = A + (offk + K - k)*lda + rxc[:, newaxis]; fp32* pb[TN, 1] = B + (offk + K - k)*ldb + ryc[:, newaxis]; fp32 a[TM, 1] = checka ? *pa : 0; fp32 b[TN, 1] = checkb ? *pb : 0; c = dot(a, trans(b), c); } int32 ridx = get_range_id(0); int32 ridy = get_range_id(1); fp32* pc[TM, TN] = C + ryc[newaxis, :]*ldc + rxc[:, newaxis]; int32 *plock = locks + ridx + ridy*grid0; while(__atomic_cas(plock, 0, 1)); int32 *pcount = plock + grid0*grid1; int32 count = *pcount; int32 countp1 = select(count == GZ - 1, 0, count + 1); int1 checkc0[TM] = rxc < M; int1 checkc1[TN] = ryc < N; int1 checkc[TM, TN] = checkc0[:, newaxis] && checkc1[newaxis, :]; if(count == 0) { @checkc *pc = c; *pcount = countp1; } else { @checkc *pc = c + *pc; *pcount = countp1; } __atomic_cas(plock, 1, 0); } )"; int main() { // initialize default compute device auto context = triton::driver::backend::contexts::get_default(); triton::jit jit(context); // matrix multiplication parameters int32_t M = 512, N = 512, K = 512; std::vector hc(M*N); std::vector rc(M*N); std::vector ha(M*K); std::vector hb(K*N); std::vector hlocks(2048); srand(0); for(size_t i = 0; i < ha.size(); i++) ha[i] = (float)rand()/RAND_MAX; for(size_t i = 0; i < hb.size(); i++) hb[i] = (float)rand()/RAND_MAX; for(size_t i = 0; i < hc.size(); i++) hc[i] = 0; triton::driver::buffer* dc = triton::driver::buffer::create(context, hc.size()*4); triton::driver::buffer* da = triton::driver::buffer::create(context, ha.size()*4); triton::driver::buffer* db = triton::driver::buffer::create(context, hb.size()*4); triton::driver::buffer* dlocks = triton::driver::buffer::create(context, hlocks.size()*4); triton::driver::stream* stream = triton::driver::stream::create(context); stream->write(da, true, 0, ha); stream->write(db, true, 0, hb); stream->write(dc, true, 0, hc); stream->synchronize(); // benchmark a given matrix multiplication kernel auto benchmark = [&](triton::driver::kernel* kernel, triton::jit::launch_information info) { // launch info unsigned TM = info.global_range_size[0]; unsigned TN = info.global_range_size[1]; unsigned nthreads = info.num_threads; unsigned GZ = jit.get_int("GZ"); std::array grid = {(M + TM - 1)/TM, (N + TN - 1)/TN, GZ}; // init locks stream->write(dlocks, true, 0, hlocks); // set argument kernel->setArg(0, da); kernel->setArg(1, db); kernel->setArg(2, dc); kernel->setArg(3, M); kernel->setArg(4, N); kernel->setArg(5, K); kernel->setArg(6, M); kernel->setArg(7, N); kernel->setArg(8, M); kernel->setArg(9, dlocks); kernel->setArg(10, grid[0]); kernel->setArg(11, grid[1]); // dry run stream->enqueue(kernel, grid, {nthreads, 1, 1}); stream->synchronize(); // benchmark double ts = bench([&](){stream->enqueue(kernel, grid, {nthreads, 1, 1});}, [&](){ stream->synchronize(); }, *context->device()); ts = ts * 1e-9; double tflops = 2.*M*N*K / ts * 1e-12; return tflops; }; // just-in-time compile source-code std::vector params = { 16, 2, 64, 16, 2, 64, 16, 8, 2, 2, 8, 8, 8, 1 }; // jit.autotune("matmul",src, benchmark); jit.add_module("matmul", src, params); triton::driver::kernel* kernel = jit.get_function("matmul"); triton::jit::launch_information info = jit.get_launch_info("matmul"); std::cout << "Performance: " << benchmark(kernel, info) << " TFLOPS " << std::endl; stream->read(dc, true, 0, hc); simple_gemm(rc, ha, hb, M, N, K); for(size_t i = 0; i < M*N; i++) if(std::abs(hc[i] - rc[i])/std::max(hc[i], rc[i]) > 1e-4){ std::cout << i << " " << hc[i] << " " << rc[i] << std::endl; exit(EXIT_FAILURE); } std::cout << "Pass!" << std::endl; }