import triton import tensorflow as tf import numpy as np src = """ #if AT == 1 #define USEA ^a #else #define USEA a #endif #if BT == 1 #define USEB ^b #else #define USEB b #endif void dot(TYPE * A __noalias __readonly __aligned(16), TYPE * B __noalias __readonly __aligned(16), TYPE * C __noalias __readonly __aligned(16), int M, int N, int K, int lda __multipleof(8), int ldb __multipleof(8), int ldc) { int ridx = get_program_id(0); int ridy = get_program_id(1); int rxa[TM] = ridx * TM + 0 ... TM; int ryb[TN] = ridy * TN + 0 ... TN; int rka[TK] = 0 ... TK; int rkb[TK] = 0 ... TK; float xc[TM, TN] = 0; /* pointers for A */ #if AT == 1 TYPE* pa[TK, TM] = A + rka[:, newaxis] + rxa[newaxis, :]*lda; TYPE a[TK, TM] = *pa; #else TYPE* pa[TM, TK] = A + rka[newaxis, :]*lda + rxa[:, newaxis]; TYPE a[TM, TK] = *pa; #endif /* pointers for B */ #if BT == 1 TYPE* pb[TN, TK] = B + rkb[newaxis, :]*ldb + ryb[:, newaxis]; TYPE b[TN, TK] = *pb; #else TYPE* pb[TK, TN] = B + rkb[:, newaxis] + ryb[newaxis, :]*ldb; TYPE b[TK, TN] = *pb; #endif /* reduction loop */ for(int k = K; k > 0; k = k - TK){ xc = USEA @ USEB + xc; #if AT == 1 pa = pa + TK; #else pa = pa + TK*lda; #endif #if BT == 1 pb = pb + TK*ldb; #else pb = pb + TK; #endif a = *pa; b = *pb; } /* epilogue */ int rxc[TM] = ridx * TM + (0 ... TM); int ryc[TN] = ridy * TN + (0 ... TN); TYPE* pc[TM, TN] = C + ryc[newaxis, :]*ldc + rxc[:, newaxis]; TYPE c[TM, TN] = xc; bool checkc0[TM] = rxc < M; bool checkc1[TN] = ryc < N; bool checkc[TM, TN] = checkc0[:, newaxis] && checkc1[newaxis, :]; *pc = c; } """ def cdiv(a, b): return -(-a // b) class dot: def __init__(self, trans_a = False, trans_b = True): self.dot = triton.op(src, ['C']) self.trans_a = trans_a self.trans_b = trans_b def __call__(self, a, b): shape_a = tf.shape(a) shape_b = tf.shape(b) M = shape_a[0] K = shape_a[1] N = shape_b[0] lda = M ldb = K ldc = N c = triton.empty([M, N]) return self.dot(a, b, c, M, N, K, lda, ldb, ldc, lambda opt: [cdiv(M, opt.D('TM')), cdiv(N, opt.D('TN')), 1], AT = self.trans_a, BT = self.trans_b, TYPE = tf.float16, TM = [128], TN = [128], TK = [32]) dot_tn = dot() def run_dot(): M, N, K = 128, 128, 128 a = tf.placeholder(tf.float16, shape=[M, K]) b = tf.placeholder(tf.float16, shape=[N, K]) # c = tf.matmul(a, b, transpose_a=True) c = dot_tn(a, b) # Reference ha = np.random.rand(M, K).astype(np.float16) hb = np.random.rand(N, K).astype(np.float16) # Run sess = tf.InteractiveSession() sess.run(tf.global_variables_initializer()) result = sess.run([c], feed_dict = {a: ha, b: hb})[0] # Test hresult = np.dot(ha.T, hb) dif = np.abs(result - hresult) np.savetxt('dif.dat', dif, '%2.4f') print(hresult) print(result) print("dif: %f" % np.max(dif)) run_dot()