import numpy as np import torch import torch.nn as nn import triton class MultiHeadAttention(nn.Module): ''' Multi-Head Attention module ''' def __init__(self, n_head, d_model, d_k, d_v): super().__init__() self.n_head = n_head self.d_k = d_k self.d_v = d_v # linear layers self.w_qs = nn.Linear(d_model, n_head * d_k) self.w_ks = nn.Linear(d_model, n_head * d_k) self.w_vs = nn.Linear(d_model, n_head * d_v) self.fc = nn.Linear(n_head * d_v, d_model) # initialize weights nn.init.normal_(self.w_qs.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_k))) nn.init.normal_(self.w_ks.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_k))) nn.init.normal_(self.w_vs.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_v))) nn.init.xavier_normal_(self.fc.weight) # layer normalization self.layer_norm = nn.LayerNorm(d_model) def forward(self, q, k, v, mask=None): # dimensions d_k, d_v, n_head = self.d_k, self.d_v, self.n_head sz_b, len_q, _ = q.size() sz_b, len_k, _ = k.size() sz_b, len_v, _ = v.size() # linear transformations residual = q q = self.w_qs(q).view(sz_b, len_q, n_head, d_k) k = self.w_ks(k).view(sz_b, len_k, n_head, d_k) v = self.w_vs(v).view(sz_b, len_v, n_head, d_v) # scaled dot-product attention attn = triton.ops.einsum('blhk,bthk->hblt', q, k, [n_head, sz_b, len_q, len_k]) attn = attn / np.sqrt(d_k) if mask is not None: attn = attn.masked_fill(mask[None], -np.inf) attn = torch.softmax(attn, dim=3) output = triton.ops.einsum('hblt,bthv->blhv', attn, v, [sz_b, len_q, n_head, d_v]) output = output.view(sz_b, len_q, -1) output = self.fc(output) # epilogue output = self.layer_norm(output + residual) return output, attn