import torch import os try: import triton._C.libtriton.cutlass as _cutlass except ImportError: _cutlass = None def sparsify_tensor(x, mask, block): ret = torch.empty((x.size(0), mask.sum(), block, block), dtype=x.dtype, device=x.device) for idx, (h, i, j) in enumerate(zip(*mask.nonzero(as_tuple=True))): ret[:, idx, :, :] = x[:, h, i * block:(i + 1) * block, j * block:(j + 1) * block] return ret def cutlass_matmul(a, b): if _cutlass is None: raise RuntimeError("Cannot find cutlass library") M, N = a.shape[0], b.shape[1] c = torch.empty_strided((M, N), (1, M), dtype=a.dtype, device=a.device) _cutlass.matmul(a, b, c) return c def mask_tensor(x, mask, block, value=0): ret = x.clone() for h, i, j in zip(*(mask == 0).nonzero(as_tuple=True)): ret[:, h, i * block:(i + 1) * block, j * block:(j + 1) * block] = value return ret def allclose(x, y): assert x.dtype == y.dtype diff = abs(x - y) x_max = torch.max(x) y_max = torch.max(y) tol = 1e-2 err = torch.max(diff) / torch.max(x_max, y_max) return err < tol def do_bench(fn, warmup=25, rep=100, grad_to_none=None, percentiles=[0.2, 0.8]): # Estimate the runtime of the function fn() torch.cuda.synchronize() start_event = torch.cuda.Event(enable_timing=True) end_event = torch.cuda.Event(enable_timing=True) start_event.record() for _ in range(5): fn() end_event.record() torch.cuda.synchronize() estimate_ms = start_event.elapsed_time(end_event) / 5 # We maintain a buffer of 256 MB that we clear # before each kernel call to make sure that the L2 # doesn't contain any input data before the run start_event = [torch.cuda.Event(enable_timing=True) for i in range(rep)] end_event = [torch.cuda.Event(enable_timing=True) for i in range(rep)] cache = torch.empty(int(256e6), dtype=torch.int8, device='cuda') # Warm-up for _ in range(int(warmup / estimate_ms)): fn() # Benchmark for i in range(rep): # we don't want `fn` to accumulate gradient values # if it contains a backward pass. So we clear the # provided gradients if grad_to_none is not None: grad_to_none.grad = None # we clear the L2 cache before each run cache.zero_() # record time of `fn` start_event[i].record() fn() end_event[i].record() torch.cuda.synchronize() times = torch.tensor([s.elapsed_time(e) for s, e in zip(start_event, end_event)]) percentiles = torch.quantile(times, torch.tensor(percentiles)).tolist() med_ms = torch.median(times).item() if percentiles: return tuple([med_ms] + percentiles) else: return med_ms class Benchmark: def __init__( self, x_names, x_vals, y_name, y_vals, y_lines, ylabel, plot_name, args, x_log=False, y_log=False, ): self.x_names = x_names self.x_vals = x_vals self.x_log = x_log self.y_name = y_name self.y_vals = y_vals self.y_lines = y_lines self.y_log = y_log self.ylabel = ylabel self.plot_name = plot_name self.args = args class Mark: def __init__(self, fn, benchmarks): self.fn = fn self.benchmarks = benchmarks def _run(self, bench, save_path, show_plots): import matplotlib.pyplot as plt import pandas as pd import os y_mean = bench.y_lines y_min = [f'{x}-min' for x in bench.y_lines] y_max = [f'{x}-max' for x in bench.y_lines] df = pd.DataFrame(columns=[bench.x_names[0]] + y_mean + y_min + y_max) for x in bench.x_vals: x_args = {x_name: x for x_name in bench.x_names} row_mean, row_min, row_max = [], [], [] for y in bench.y_vals: ret = self.fn(**x_args, **{bench.y_name: y}, **bench.args) try: y_mean, y_min, y_max = ret except TypeError: y_mean, y_min, y_max = ret, None, None row_mean += [y_mean] row_min += [y_min] row_max += [y_max] df.loc[len(df)] = [x] + row_mean + row_min + row_max if bench.plot_name: plt.figure() ax = plt.subplot() xlabel = " = ".join(bench.x_names) x = bench.x_names[0] for y in bench.y_lines: y_min, y_max = df[y + '-min'], df[y + '-max'] ax.plot(df[x], df[y], label=y) if y_min is not None and y_max is not None: ax.fill_between(df[x], y_min, y_max, alpha=0.5) ax.legend() ax.set_xlabel(xlabel) ax.set_ylabel(bench.ylabel) ax.set_title(bench.plot_name) ax.set_xscale("log" if bench.x_log else "linear") ax.set_yscale("log" if bench.y_log else "linear") if show_plots: plt.show() if save_path: plt.savefig(os.path.join(save_path, f"{bench.plot_name}.png")) if save_path: df = df[[bench.x_names[0]] + bench.y_lines] df.to_csv(os.path.join(save_path, f"{bench.plot_name}.csv"), float_format='%.1f', index=False) def run(self, show_plots=False, save_path=''): has_single_bench = isinstance(self.benchmarks, Benchmark) benchmarks = [self.benchmarks] if has_single_bench else self.benchmarks if save_path: html = open(os.path.join(save_path, "results.html"), "w") html.write("\n") for bench in benchmarks: self._run(bench, save_path, show_plots) if save_path: html.write(f"\n") if save_path: html.write("\n") def perf_report(benchmarks): wrapper = lambda fn: Mark(fn, benchmarks) return wrapper