#include #include "isaac/driver/command_queue.h" #include "isaac/driver/common.h" #include "isaac/driver/context.h" #include "isaac/driver/device.h" #include "isaac/driver/event.h" #include "isaac/driver/kernel.h" #include "isaac/driver/ndrange.h" #include "isaac/driver/buffer.h" #include "helpers/ocl/infos.hpp" namespace isaac { namespace driver { CommandQueue::CommandQueue(cl_command_queue const & queue, bool take_ownership) : backend_(OPENCL), context_(ocl::info(queue), take_ownership), device_(ocl::info(queue), take_ownership), h_(backend_, take_ownership) { h_.cl() = queue; } CommandQueue::CommandQueue(Context const & context, Device const & device, cl_command_queue_properties properties): backend_(device.backend_), context_(context), device_(device), h_(backend_, context.h_.has_ownership()) { switch(backend_) { #ifdef ISAAC_WITH_CUDA case CUDA: cuda::check(cuStreamCreate(h_.cu.get(), 0)); break; #endif case OPENCL: { cl_int err; h_.cl() = clCreateCommandQueue(context.h_.cl(), device.h_.cl(), properties, &err); ocl::check(err); break; } default: throw; } } Context const & CommandQueue::context() const { return context_; } Device const & CommandQueue::device() const { return device_; } void CommandQueue::synchronize() { switch(backend_) { #ifdef ISAAC_WITH_CUDA case CUDA: cuda::check(cuStreamSynchronize(*h_.cu)); break; #endif case OPENCL: ocl::check(clFinish(h_.cl())); break; default: throw; } } Event CommandQueue::enqueue(Kernel const & kernel, NDRange global, driver::NDRange local, std::vector const *) { Event event(backend_); switch(backend_) { #ifdef ISAAC_WITH_CUDA case CUDA: cuda::check(cuEventRecord(event.h_.cu->first, *h_.cu)); cuda::check(cuLaunchKernel(*kernel.h_.cu, global[0]/local[0], global[1]/local[1], global[2]/local[2], local[0], local[1], local[2], 0, *h_.cu,(void**)&kernel.cu_params_[0], NULL)); cuda::check(cuEventRecord(event.h_.cu->second, *h_.cu)); break; #endif case OPENCL: ocl::check(clEnqueueNDRangeKernel(h_.cl(), kernel.h_.cl(), global.dimension(), NULL, (const size_t *)global, (const size_t *) local, 0, NULL, &event.h_.cl())); break; default: throw; } return event; } void CommandQueue::write(Buffer const & buffer, bool blocking, std::size_t offset, std::size_t size, void const* ptr) { switch(backend_) { #ifdef ISAAC_WITH_CUDA case CUDA: if(blocking) cuda::check(cuMemcpyHtoD(*buffer.h_.cu + offset, ptr, size)); else cuda::check(cuMemcpyHtoDAsync(*buffer.h_.cu + offset, ptr, size, *h_.cu)); break; #endif case OPENCL: clEnqueueWriteBuffer(h_.cl(), buffer.h_.cl(), blocking, offset, size, ptr, 0, NULL, NULL); break; default: throw; } } void CommandQueue::read(Buffer const & buffer, bool blocking, std::size_t offset, std::size_t size, void* ptr) { switch(backend_) { #ifdef ISAAC_WITH_CUDA case CUDA: if(blocking) cuda::check(cuMemcpyDtoH(ptr, *buffer.h_.cu + offset, size)); else cuda::check(cuMemcpyDtoHAsync(ptr, *buffer.h_.cu + offset, size, *h_.cu)); break; #endif case OPENCL: clEnqueueReadBuffer(h_.cl(), buffer.h_.cl(), blocking, offset, size, ptr, 0, NULL, NULL); break; default: throw; } } bool CommandQueue::operator==(CommandQueue const & other) const { return h_ == other.h_; } bool CommandQueue::operator<(CommandQueue const & other) const { return h_ < other.h_; } HANDLE_TYPE(cl_command_queue, CUstream) & CommandQueue::handle() { return h_; } } }