#include #include #include "ATen/cuda/CUDAContext.h" #include #include "triton/jit.h" #include "triton/driver/stream.h" #define CHECK_CUDA(x) AT_CHECK(x.type().is_cuda(), #x " must be a CUDA tensor") #define CHECK_CONTIGUOUS(x) AT_CHECK(x.is_contiguous(), #x " must be contiguous") #define CHECK_INPUT(x) CHECK_CUDA(x); CHECK_CONTIGUOUS(x) const char* src = R"( const tunable int32 TM = {16, 32, 64}; const tunable int32 TN = {16, 32, 64}; const tunable int32 TK = {8}; __constant__ int32* delta = alloc_const int32[18]; __constant__ int32* masks = alloc_const int32[1024]; void conv(read_only restrict fp32 *a, read_only restrict fp32 *b, fp32 *c, int32 M, int32 N, int32 K, int32 AN, int32 AH, int32 AW, int32 CN, int32 CK, int32 CP, int32 CQ, int32 AC, int32 AR, int32 AS, int32 lda_n, int32 lda_c, int32 lda_h, int32 lda_w, int32 ldc_n, int32 ldc_k, int32 ldc_p, int32 ldc_q, int32 pad_h, int32 pad_w, int32 bound){ int32 rxa[TM] = get_global_range[TM](0); int32 rb0[TN] = get_global_range[TN](1); int32 rka[TK] = 0 ... TK; int32 rb1[TK] = 0 ... TK; fp32 C[TM, TN] = 0; int32 ranh[TM] = rxa / CQ; int32 raw[TM] = rxa % CQ - pad_w; int32 ran[TM] = ranh / CP; int32 rah[TM] = ranh % CP - pad_h; int32 ra0[TM] = ran*lda_n + rah*lda_h + raw*lda_w; int32 racr[TK] = rka / AS; int32 ras[TK] = rka % AS; int32 rac[TK] = racr / AR; int32 rar[TK] = racr % AR; int32 ra1[TK] = rac*lda_c + rar*lda_h + ras*lda_w; fp32* pa[TM, TK] = a + ra1[newaxis, :] + ra0[:, newaxis]; fp32* pb[TN, TK] = b + rb1[newaxis, :]*CK + rb0[:, newaxis]; __constant__ int32* pincd[TK] = delta + rka; __constant__ int32* pd[TK] = delta + AR*AS + rka; int32 d[TK] = *pd; int32 incd[TK] = *pincd; int32 maskh[TM] = pad_h + min(rah, 0) + max(rah + AR - AH, 0); int32 maskw[TM] = pad_w + min(raw, 0) + max(raw + AS - AW, 0); __constant__ int32* pm[TM] = masks + AR*AS + maskw*AR*AS + maskh*AR*AS*(2*pad_w + 1); __constant__ int32* pincm[TM] = delta; int32 incm[TM] = *pincm; int32 checka0[TM] = *pm; int32 checka1[TK] = 1 << rka; int1 checka[TM, TK] = (checka0[:, newaxis] & checka1[newaxis, :]) > 0; fp32 a[TM, TK] = checka ? *pa : 0; fp32 b[TN, TK] = *pb; for(int32 k = K; k > 0; k = k - TK){ C = dot(a, trans(b), C); pb = pb + TK*CK; pa = pa + d[newaxis, :]; b = *pb; pd = pd + incd; pincd = pincd + incd; d = *pd; incd = *pincd; pm = pm + incm; pincm = pincm + incm; incm = *pincm; checka0 = *pm; checka = (checka0[:, newaxis] & checka1[newaxis, :]) > 0; a = checka ? *pa : 0; } int32 rxc[TM] = get_global_range[TM](0); int32 rc1[TN] = get_global_range[TN](1); int32 rcn[TM] = rxc / (CP*CQ); int32 rcpq[TM] = rxc % (CP*CQ); int32 rc0[TM] = rcn * ldc_n + rcpq; fp32* pc[TM, TN] = c + rc1[newaxis, :]*ldc_k + rc0[:, newaxis]; int1 checkc0[TM] = rxc < M; int1 checkc1[TN] = rc1 < N; int1 checkc[TM, TN] = checkc0[:, newaxis] && checkc1[newaxis, :]; @checkc *pc = C; })"; torch::Tensor conv_forward( const torch::Tensor data, const torch::Tensor weight) { // Check CHECK_INPUT(data); CHECK_INPUT(weight); // Unpack data shapes const auto B = data.size(0); const auto Ci = data.size(1); const auto H = data.size(2); const auto W = data.size(3); // Unpack weight shapes const auto Cf = weight.size(0); const auto R = weight.size(1); const auto S = weight.size(2); const auto K = weight.size(3); // Allocate output AT_CHECK(Ci == Cf, "Number of channels in data and weights must match"); torch::Tensor output = torch::empty({B, K, H, W}, torch::kFloat); // Wrap CUDA handles triton::driver::cu_stream sstream(at::cuda::getCurrentCUDAStream(), false); triton::driver::stream* stream = &sstream; triton::driver::context* ctx = stream->context(); triton::driver::cu_buffer d(ctx, (CUdeviceptr)data.storage().data(), false); triton::driver::cu_buffer w(ctx, (CUdeviceptr)weight.storage().data(), false); // Create JIT triton::jit jit(ctx); std::vector params = { 16, 2, 64, 32, 2, 64, 16, 8, 2, 2, 8, 8, 4 }; jit.add_module("conv", src, params); triton::driver::kernel* kernel = jit.get_function("conv"); triton::jit::launch_information info = jit.get_launch_info("conv"); return output; } static auto registry = torch::jit::RegisterOperators("triton::conv_forward", &conv_forward);