import libtriton src = """ const tunable int TM = {128}; const tunable int TN = {128}; const tunable int TK = {32}; void matmul(restrict read_only align(16) half *A, restrict read_only align(16) half *B, restrict read_only align(16) half *C, int M, int N, int K, multiple_of(8) int lda, multiple_of(8)" int ldb, int ldc) { int ridx = get_range_id(0); int ridy = get_range_id(1); int rxa[TM] = ridx * TM + (0 ... TM); int ryb[TN] = ridy * TN + (0 ... TN); int rka[TK] = 0 ... TK; int rkb[TK] = 0 ... TK; float xc[TM, TN] = 0; half* pa[TM, TK] = A + rka[newaxis, :]*lda + rxa[:, newaxis]; half* pb[TN, TK] = B + rkb[newaxis, :]*ldb + ryb[:, newaxis]; half a[TM, TK] = *pa; half b[TN, TK] = *pb; for(int k = K; k > 0; k = k - TK){ xc = dot(a, trans(b), xc); pa = pa + TK*lda; pb = pb + TK*ldb; a = *pa; b = *pb; } int rxc[TM] = ridx * TM + (0 ... TM); int ryc[TN] = ridy * TN + (0 ... TN); half* pc[TM, TN] = C + ryc[newaxis, :]*ldc + rxc[:, newaxis]; half c[TM, TN] = xc; bool checkc0[TM] = rxc < M; bool checkc1[TN] = ryc < N; bool checkc[TM, TN] = checkc0[:, newaxis] && checkc1[newaxis, :]; @checkc *pc = c; } """ print(libtriton.make_tensorflow_src(src, [2], '(M + #TM - 1)/#TM, (N + #TN - 1)/#TN, 1'))