import array import numpy as np import random import time from deap import algorithms from deap import base from deap import creator from deap import tools from genetic_operators import GeneticOperators def eaMuPlusLambda(population, toolbox, mu, lambda_, cxpb, mutpb, maxtime, stats=None, halloffame=None, verbose=__debug__): logbook = tools.Logbook() logbook.header = ['gen', 'nevals'] + (stats.fields if stats else []) # Evaluate the individuals with an invalid fitness invalid_ind = [ind for ind in population if not ind.fitness.valid] fitnesses = toolbox.map(toolbox.evaluate, invalid_ind) for ind, fit in zip(invalid_ind, fitnesses): ind.fitness.values = fit if halloffame is not None: halloffame.update(population) record = stats.compile(population) if stats is not None else {} logbook.record(gen=0, nevals=len(invalid_ind), **record) if verbose: print logbook.stream # Begin the generational process gen = 0 maxtime = time.strptime(maxtime, '%Mm%Ss') maxtime = maxtime.tm_min*60 + maxtime.tm_sec start_time = time.time() while time.time() - start_time < maxtime: # Vary the population offspring = algorithms.varOr(population, toolbox, lambda_, cxpb, mutpb) # Evaluate the individuals with an invalid fitness invalid_ind = [ind for ind in offspring if not ind.fitness.valid] fitnesses = toolbox.map(toolbox.evaluate, invalid_ind) for ind, fit in zip(invalid_ind, fitnesses): ind.fitness.values = fit # Update the hall of fame with the generated individuals if halloffame is not None: halloffame.update(offspring) # Select the next generation population population[:] = toolbox.select(population + offspring, mu) # Update the statistics with the new population gen = gen + 1 record = stats.compile(population) if stats is not None else {} logbook.record(gen=gen, nevals=len(invalid_ind), **record) if verbose: print logbook.stream return population, logbook def genetic(statement, context, TemplateType, build_template, parameter_names, all_parameters, compute_perf, perf_metric, out): gen = GeneticOperators(context.devices[0], statement, all_parameters, parameter_names, TemplateType, build_template) creator.create("FitnessMin", base.Fitness, weights=(-1.0,)) creator.create("Individual", list, fitness=creator.FitnessMin) toolbox = base.Toolbox() toolbox.register("individual", tools.initIterate, creator.Individual, gen.init) toolbox.register("population", tools.initRepeat, list, toolbox.individual) toolbox.decorate("population", gen.repair) toolbox.register("evaluate", gen.evaluate) toolbox.register("mate", tools.cxUniform, indpb=0.3) toolbox.decorate("mate", gen.repair) toolbox.register("mutate", gen.mutate, indpb=0.2) toolbox.decorate("mutate", gen.repair) toolbox.register("select", tools.selNSGA2) pop = toolbox.population(n=10) hof = tools.HallOfFame(1) best_performer = lambda x: max([compute_perf(hof[0].fitness.values[0]) for t in x]) best_profile = lambda x: '(%s)'%','.join(map(str,hof[0])) cxpb = 0.5 mutpb = 0.2 stats = tools.Statistics(lambda ind: ind.fitness.values) stats.register("max (" + perf_metric + ")", lambda x: max([compute_perf(hof[0].fitness.values[0]) for t in x])) stats.register("profile ", lambda x: '(%s)'%','.join(map(str,hof[0]))) pop, log = eaMuPlusLambda(pop, toolbox, 10, 20, cxpb=0.2, mutpb=0.2, maxtime='5m0s', stats=stats, halloffame=hof, verbose=True)