#include #include #include #include #include #include #include "triton/codegen/selection/selection.h" #include "triton/runtime/function.h" #include "triton/lang/code_gen.h" #include "triton/lang/parser.h" #include "triton/lang/cpp.h" #include "triton/driver/device.h" #include "triton/driver/stream.h" #include "triton/driver/kernel.h" #include "triton/driver/module.h" #include "triton/ir/module.h" #include "triton/ir/function.h" #include "triton/tools/bench.hpp" using namespace triton; namespace rt = triton::runtime; /* TF triton op properties */ std::map> id_grid_map; std::map> id_fn_map; std::map i64scalar_map; void register_grid(size_t id, const rt::function::grid_fn_ty& grid_fn) { id_grid_map[id].reset(new rt::function::grid_fn_ty(grid_fn)); } void register_fn(size_t id, const std::string& src, const rt::function::options_space_t& opt) { id_fn_map[id].reset(new rt::function(src, opt)); } size_t make_op_id() { return id_fn_map.size(); } size_t make_scalar_id() { return i64scalar_map.size(); } bool has_scalar(size_t id) { return i64scalar_map.find(id) != i64scalar_map.end(); } int64_t retrieve_scalar(size_t id) { return i64scalar_map.at(id); } /* TF source-code generation */ inline std::string to_tf_ty(ir::type *ty) { if(ty->is_integer_ty(1)) return "bool"; if(ty->is_integer_ty(8)) return "int8"; if(ty->is_integer_ty(16)) return "int16"; if(ty->is_integer_ty(32)) return "int32"; if(ty->is_integer_ty(64)) return "int64"; if(ty->is_half_ty()) return "float16"; if(ty->is_float_ty()) return "float32"; if(ty->is_double_ty()) return "float64"; if(ty->is_pointer_ty()) return "Tensor"; throw std::runtime_error("unknown type"); } inline std::string to_tf_scalar_ty(ir::type *ty) { if(ty->is_pointer_ty()) return to_tf_ty(ty->get_pointer_element_ty()); else { return to_tf_ty(ty); } } inline std::string ref_to_tf_ty(ir::type *ty) { std::string res = to_tf_ty(ty); if(ty->is_pointer_ty()) res = "const " + res + "&"; return res; } void gen_extract_inputs(std::ostream &os, const std::vector& args) { for(unsigned i = 0; i < args.size(); i++){ ir::value *arg = args[i]; std::string suffix = ""; ir::type *tr_ty = arg->get_type(); std::string tf_ty = ref_to_tf_ty(tr_ty); if(!tr_ty->is_pointer_ty()) suffix = ".scalar<" + tf_ty + ">()()"; os << " " << tf_ty << " " << arg->get_name() << " = context->input(" << i << ")" << suffix << ";\n "; } } void gen_set_outputs(std::ostream &os, const std::vector& outputs) { for(unsigned i = 0; i < outputs.size(); i++) os << " context->set_output(" << i << ", " << outputs[i] << ");\n "; } void gen_make_handles(std::ostream &os, const std::vector& args) { for(unsigned i = 0; i < args.size(); i++){ ir::argument *arg = args[i]; if(!arg->get_type()->is_pointer_ty()) continue; const std::string& name = arg->get_name(); os << " drv::cu_buffer cu_" + name + "(ctx, " + name + ".tensor_data().size(), (CUdeviceptr)" + name + ".tensor_data().data(), false);\n "; } } void gen_make_launch_function(std::ostream &os, const std::vector& args) { os << " (*id_fn_map.at(id_))({"; for(unsigned i = 0; i < args.size() ; i++){ ir::argument *arg = args[i]; std::string name = arg->get_name(); if(arg->get_type()->is_pointer_ty()) name = "&cu_" + name; if(i > 0) os << ", "; os << name; } os << "}, *id_grid_map.at(id_), stream); \n"; } void gen_register_kernel_builder(std::ostream &os, const std::string &name, const std::string &opname, const std::vector& args){ os << "REGISTER_KERNEL_BUILDER(Name(\"" + name + "\").Device(DEVICE_GPU)"; for(size_t i = 0; i < args.size(); i++){ ir::argument *arg = args[i]; std::string name = arg->get_name(); auto tolower = [](char c) { return std::tolower(c);}; std::transform(name.begin(), name.end(), name.begin(), tolower); if(!arg->get_type()->is_pointer_ty()) os << ".HostMemory(\"" + name + "\")"; } os << ", " + opname << ");\n"; } void gen_register_op(std::ostream &os, const std::string &name, const std::vector& args, const std::vector& outputs){ os << "REGISTER_OP(\"" << name << "\")\n"; for(size_t i = 0; i < args.size(); i++){ ir::argument *arg = args[i]; std::string name = arg->get_name(); auto tolower = [](char c) { return std::tolower(c);}; std::transform(name.begin(), name.end(), name.begin(), tolower); os << " .Input(\"" << name << ": " << to_tf_scalar_ty(arg->get_type()) << "\")\n"; } for(size_t i = 0; i < outputs.size(); i++){ std::string name = outputs[i]; size_t idx; for(idx = 0; idx < args.size(); idx++) if(args[idx]->get_name() == name) break; if(idx == args.size()) throw std::runtime_error("unknown output"); os << " .Output(\"out" << i << ": " << to_tf_scalar_ty(args[idx]->get_type()) << "\")\n"; } os << " .Attr(\"id: int\")" << std::endl; os << ";\n"; } inline std::string preheader() { return R"( #define bool _Bool #define true 1 #define false 0 #define __bool_true_false_are_defined 1 #define __readonly __attribute__((readonly)) #define __writeonly __attribute__((writeonly)) #define __noalias __attribute__((noalias)) #define __aligned(A) __attribute__((aligned(A))) #define __multipleof(A) __attribute__((multipleof(A))) extern int get_program_id(int); )"; } std::tuple make_tensorflow_src(std::string src, const std::vector& outputs, const runtime::function::options_space_t& opt) { src = preheader() + src; // pre-process TokenSequence tokens; Preprocessor cpp(&src, true); for(auto it: opt.defines){ cpp.AddMacro(it.first, &it.second[0]); } cpp.Process(tokens); // parse Parser parser(tokens); parser.Parse(); // triton-ir code-gen ir::context ctx; auto ir = std::shared_ptr(new ir::module("", ctx)); Generator gen(&parser); gen.Gen(&*ir); // function ir::function* fn = ir->get_function_list().front(); std::string name = fn->get_name(); std::string cc_name = name; cc_name[0] = static_cast(std::toupper(cc_name[0])); std::string opname = cc_name + "Op"; std::ostringstream oss; oss << R"( #include "triton/driver/buffer.h" #include "triton/driver/backend.h" #include "triton/driver/stream.h" #include "triton/runtime/function.h" #define EIGEN_USE_GPU #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/shape_inference.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/util/cuda_kernel_helper.h" #include "tensorflow/core/util/padding.h" #include "tensorflow/core/util/tensor_format.h" #include "tensorflow/core/framework/common_shape_fns.h" using namespace tensorflow; using GPUDevice = Eigen::GpuDevice; namespace rt = triton::runtime; namespace drv = triton::driver; extern std::map> id_grid_map; extern std::map> id_fn_map; class )" << opname << R"(: public OpKernel { public: explicit )" << opname << R"((OpKernelConstruction* context) : OpKernel(context) { OP_REQUIRES_OK(context, context->GetAttr("id", &id_)); } void Compute(OpKernelContext* context){ // get device/stream GPUDevice device = context->eigen_device(); drv::cu_stream sstream(device.stream(), false); drv::context* ctx = sstream.context(); drv::stream* stream = &sstream; // extract inputs )"; gen_extract_inputs(oss, fn->args()); oss << R"( // set outputs )"; gen_set_outputs(oss, outputs); oss << R"( // wrap tensors )"; gen_make_handles(oss, fn->args()); oss << R"( )"; oss << R"( // launch function )"; gen_make_launch_function(oss, fn->args()); oss << R"( } private: int id_; }; // register kernel builder )"; gen_register_kernel_builder(oss, cc_name, opname, fn->args()); oss << R"( // register op )"; gen_register_op(oss, cc_name, fn->args(), outputs); return {oss.str(), name}; } typedef triton::runtime::function::options_t options_t; typedef triton::runtime::function::options_space_t options_space_t; PYBIND11_MODULE(libtriton, m) { m.doc() = "Python bindings to the C++ Triton API"; // framework binding source code generation m.def("make_tensorflow_src", &make_tensorflow_src, "Creates C++ source code for a custom Tensorflow op " "corresponding to the specified Triton kernel"); // bindings for triton classes pybind11::class_(m, "options") .def(pybind11::init<>()) .def("d", &options_t::D) .def_readonly("num_warps", &options_t::num_warps); pybind11::class_(m, "options_space") .def(pybind11::init<>()) .def_readwrite("defines", &options_space_t::defines) .def_readwrite("num_warps", &options_space_t::num_warps); // hooks into triton constructs since frameworks may not use pybind11 m.def("register_grid", ®ister_grid); m.def("register_fn", ®ister_fn); m.def("make_op_id", &make_op_id); m.def("make_scalar_id", &make_scalar_id); m.def("retrieve_scalar", &retrieve_scalar) ; }