import pytest import torch import triton import triton.language as tl @triton.jit def _fwd_kernel( Q, K, V, TMP, L, M, # NOTE: TMP is a scratchpad buffer to workaround a compiler bug Out, stride_qz, stride_qh, stride_qm, stride_qk, stride_kz, stride_kh, stride_kk, stride_kn, stride_vz, stride_vh, stride_vk, stride_vn, stride_oz, stride_oh, stride_om, stride_on, Z, H, N_CTX, BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr, BLOCK_N: tl.constexpr, ): start_qm = tl.program_id(0) off_hz = tl.program_id(1) # initialize offsets offs_m = start_qm * BLOCK_M + tl.arange(0, BLOCK_M) offs_n = tl.arange(0, BLOCK_N) offs_d = tl.arange(0, BLOCK_DMODEL) off_q = off_hz * stride_qh + offs_m[:, None] * stride_qm + offs_d[None, :] * stride_qk off_k = off_hz * stride_qh + offs_n[None, :] * stride_kn + offs_d[:, None] * stride_kk off_v = off_hz * stride_qh + offs_n[:, None] * stride_qm + offs_d[None, :] * stride_qk # Initialize pointers to Q, K, V q_ptrs = Q + off_q k_ptrs = K + off_k v_ptrs = V + off_v # initialize pointer to m and l t_ptrs = TMP + off_hz * N_CTX + offs_m acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32) m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf") l_i = tl.zeros([BLOCK_M], dtype=tl.float32) q = tl.load(q_ptrs) for start_n in range(0, start_qm + 1): # -- compute qk ---- k = tl.load(k_ptrs) qk = tl.dot(q, k) qk += tl.where(offs_m[:, None] >= (start_n * BLOCK_N + offs_n[None, :]), 0, float("-inf")) # -- compute m_ij, p, l_ij m_ij = tl.max(qk, 1) p = tl.exp(qk - m_ij[:, None]) l_ij = tl.sum(p, 1) # -- update m_i and l_i m_i_new = tl.maximum(m_i, m_ij) alpha = tl.exp(m_i - m_i_new) beta = tl.exp(m_ij - m_i_new) l_i_new = alpha * l_i + beta * l_ij # -- update output accumulator -- # scale p p_scale = beta / l_i_new p = p * p_scale[:, None] p = p.to(tl.float16) # scale acc acc_scale = l_i / l_i_new * alpha tl.store(t_ptrs, acc_scale) acc_scale = tl.load(t_ptrs) # BUG: have to store and immediately load acc = acc * acc_scale[:, None] # update acc v = tl.load(v_ptrs) acc += tl.dot(p, v) k_ptrs += BLOCK_N * stride_kn v_ptrs += BLOCK_N * stride_vk # r_ptrs += BLOCK_N l_i = l_i_new m_i = m_i_new start_qm = tl.program_id(0) offs_m = start_qm * BLOCK_M + tl.arange(0, BLOCK_M) # write back l and m l_ptrs = L + off_hz * N_CTX + offs_m m_ptrs = M + off_hz * N_CTX + offs_m tl.store(l_ptrs, l_i) tl.store(m_ptrs, m_i) # initialize pointers to output offs_n = tl.arange(0, BLOCK_DMODEL) off_out = off_hz * stride_oh + offs_m[:, None] * stride_om + offs_n[None, :] * stride_on out_ptrs = Out + off_out tl.store(out_ptrs, acc) class _attention(torch.autograd.Function): @staticmethod def forward(ctx, q, k, v): BLOCK = 128 # shape constraints Lq, Lk = q.shape[-1], k.shape[-2] assert Lq == Lk o = torch.empty_like(q) grid = (triton.cdiv(q.shape[2], BLOCK), q.shape[0] * q.shape[1]) tmp = torch.empty((q.shape[0] * q.shape[1], q.shape[2]), device=q.device, dtype=torch.float32) L = torch.empty((q.shape[0] * q.shape[1], q.shape[2]), device=q.device, dtype=torch.float32) m = torch.empty((q.shape[0] * q.shape[1], q.shape[2]), device=q.device, dtype=torch.float32) _fwd_kernel[grid]( q, k, v, tmp, L, m, o, q.stride(0), q.stride(1), q.stride(2), q.stride(3), k.stride(0), k.stride(1), k.stride(2), k.stride(3), v.stride(0), v.stride(1), v.stride(2), v.stride(3), o.stride(0), o.stride(1), o.stride(2), o.stride(3), q.shape[0], q.shape[1], q.shape[2], BLOCK_M=BLOCK, BLOCK_N=BLOCK, BLOCK_DMODEL=64, num_warps=4, num_stages=1, ) ctx.save_for_backward(q, k, v, o, L, m) ctx.BLOCK = BLOCK ctx.grid = grid return o attention = _attention.apply @pytest.mark.parametrize('Z, H, N_CTX, D_MODEL', [(2, 3, 1024, 64)]) def test_op(Z, H, N_CTX, D_MODEL, dtype=torch.float16): torch.manual_seed(20) q = .5 * torch.randn((Z, H, N_CTX, D_MODEL), dtype=dtype, device="cuda", requires_grad=True) k = .5 * torch.randn((Z, H, D_MODEL, N_CTX), dtype=dtype, device="cuda", requires_grad=True) v = .5 * torch.randn((Z, H, N_CTX, D_MODEL), dtype=dtype, device="cuda", requires_grad=True) # triton implementation tri_out = attention(q, k, v) # reference implementation M = torch.tril(torch.ones((N_CTX, N_CTX), device="cuda")) ref_qk = torch.matmul(q, k) for z in range(Z): for h in range(H): ref_qk[:, :, M == 0] = float("-inf") ref_qk = torch.softmax(ref_qk, dim=-1) ref_out = torch.matmul(ref_qk, v) # compare triton.testing.assert_almost_equal(ref_out, tri_out) try: from flash_attn.flash_attn_interface import flash_attn_func HAS_FLASH = True except BaseException: HAS_FLASH = False BATCH, N_HEADS, N_CTX, D_HEAD = 4, 64, 2048, 64 # vary batch size for fixed heads / seq batch_bench = triton.testing.Benchmark( x_names=['BATCH'], x_vals=[2**i for i in range(0, 8)], line_arg='provider', line_vals=['triton'] + (['flash'] if HAS_FLASH else []), line_names=['Triton'] + (['Flash'] if HAS_FLASH else []), styles=[('red', '-'), ('blue', '-')], ylabel='ms', plot_name=f'fused-attention-seq{N_CTX}-head{N_HEADS}-d{D_HEAD}', args={'H': N_HEADS, 'N_CTX': N_CTX, 'D_MODEL': D_HEAD, 'dtype': torch.float16} ) # vary seq length for fixed head and batch=4 seq_bench = triton.testing.Benchmark( x_names=['N_CTX'], x_vals=[2**i for i in range(10, 16)], line_arg='provider', line_vals=['triton'] + (['flash'] if HAS_FLASH else []), line_names=['Triton'] + (['Flash'] if HAS_FLASH else []), styles=[('red', '-'), ('blue', '-')], ylabel='ms', plot_name=f'fused-attention-batch{BATCH}-head{N_HEADS}-d{D_HEAD}', args={'H': D_HEAD, 'BATCH': BATCH, 'D_MODEL': D_HEAD, 'dtype': torch.float16} ) @triton.testing.perf_report([batch_bench, seq_bench]) def bench_flash_attention(BATCH, H, N_CTX, D_MODEL, provider, dtype=torch.float16, device="cuda"): warmup = 25 rep = 500 if provider == "triton": q = torch.randn((BATCH, H, N_CTX, D_MODEL), dtype=dtype, device="cuda", requires_grad=True) k = torch.randn((BATCH, H, D_MODEL, N_CTX), dtype=dtype, device="cuda", requires_grad=True) v = torch.randn((BATCH, H, N_CTX, D_MODEL), dtype=dtype, device="cuda", requires_grad=True) fn = lambda: attention(q, k, v) ms = triton.testing.do_bench(fn, percentiles=None, warmup=warmup, rep=rep) return ms if provider == "flash": lengths = torch.full((BATCH,), fill_value=N_CTX, device=device) cu_seqlens = torch.zeros((BATCH + 1,), device=device, dtype=torch.int32) cu_seqlens[1:] = lengths.cumsum(0) qkv = torch.randn((BATCH * N_CTX, 3, H, D_MODEL), dtype=dtype, device=device, requires_grad=True) fn = lambda: flash_attn_func(qkv, cu_seqlens, 0., N_CTX, causal=True) ms = triton.testing.do_bench(fn, percentiles=None, warmup=warmup, rep=rep) return ms bench_flash_attention.run(save_path='.', print_data=True)