#include #include #include "common.hpp" #include "triton/jit.h" #include "triton/driver/backend.h" #include "triton/driver/stream.h" #include "triton/dnn/conv.h" int main() { // initialize default compute device auto context = triton::driver::backend::contexts::get_default(); // initialize just-in-time compiler triton::jit jit(context); // initialization int32_t B = 4, NF = 32; int32_t D = 1, H = 24, W = 240; int32_t NC = 64, T = 1, R = 3, S = 3; int32_t pad_d = 0, pad_h = 1, pad_w = 1; int32_t stride_d = 1, stride_h = 1, stride_w = 1; int32_t upsample_d = 1, upsample_h = 1, upsample_w = 1; int32_t RD = (D*upsample_d - T + 1 + 2*pad_d + stride_d - 1)/stride_d; int32_t RH = (H*upsample_h - R + 1 + 2*pad_h + stride_h - 1)/stride_h; int32_t RW = (W*upsample_w - S + 1 + 2*pad_w + stride_w - 1)/stride_w; // equivalent matmul dimensions int32_t M = B*RD*RH*RW; int32_t N = NF; int32_t K = NC*T*R*S; // convolution configuration std::vector hc(B*RH*RW*NF); std::vector rc(B*RH*RW*NF); std::vector ha(B*NC*H*W); std::vector hb(NC*R*S*NF); srand(0); for(size_t i = 0; i < ha.size(); i++) ha[i] = (float)rand()/RAND_MAX; for(size_t i = 0; i < hb.size(); i++) hb[i] = (float)rand()/RAND_MAX; for(size_t i = 0; i < hc.size(); i++) hc[i] = 0; triton::driver::buffer* dc = triton::driver::buffer::create(context, hc.size()*4); triton::driver::buffer* da = triton::driver::buffer::create(context, ha.size()*4); triton::driver::buffer* db = triton::driver::buffer::create(context, hb.size()*4); triton::driver::stream* stream = triton::driver::stream::create(context); stream->write(da, true, 0, ha); stream->write(db, true, 0, hb); stream->write(dc, true, 0, hc); stream->synchronize(); // memory strides for data int32_t stride_i_w = 1; int32_t stride_i_h = W*stride_i_w; int32_t stride_i_d = H*stride_i_h; int32_t stride_i_c = D*stride_i_d; int32_t stride_i_n = NC*stride_i_c; // memory stride for activations int32_t stride_o_q = 1; int32_t stride_o_p = RW*stride_o_q; int32_t stride_o_m = RH*stride_o_p; int32_t stride_o_k = RD*stride_o_m; int32_t stride_o_n = NF*stride_o_k; // look-up table triton::dnn::conv configuration(B, NC, H, W, R, S, NF, 1, 1, 0, 0); std::vector h_delta, h_masks; configuration.build_lut(h_delta, h_masks); // benchmark a given convolution kernel auto benchmark = [&](triton::driver::kernel* kernel, triton::jit::launch_information info) { // launch info unsigned TM = info.global_range_size[0]; unsigned TN = info.global_range_size[1]; // initialize constant memory triton::driver::buffer* delta = jit.get_buffer("delta"); triton::driver::buffer* masks = jit.get_buffer("masks"); stream->write(delta, false, 0, h_delta.size()*4, h_delta.data()); stream->write(masks, false, 0, h_masks.size()*4, h_masks.data()); stream->synchronize(); // launch info unsigned nthreads = info.num_threads; std::array grid = {(M + TM - 1)/TM, (N + TN - 1)/TN, 1}; // set arguments kernel->setArg(0, da); kernel->setArg(1, db); kernel->setArg(2, dc); kernel->setArg(3, M); kernel->setArg(4, N); kernel->setArg(5, K); kernel->setArg(6, B); kernel->setArg(7, H); kernel->setArg(8, W); kernel->setArg(9, NF); kernel->setArg(10, RH); kernel->setArg(11, RW); kernel->setArg(12, NC); kernel->setArg(13, R); kernel->setArg(14, S); kernel->setArg(15, stride_i_n); kernel->setArg(16, stride_i_c); kernel->setArg(17, stride_i_h); kernel->setArg(18, stride_i_w); kernel->setArg(19, stride_o_n); kernel->setArg(20, stride_o_k); kernel->setArg(21, stride_o_p); kernel->setArg(22, stride_o_q); kernel->setArg(23, pad_h); kernel->setArg(24, pad_w); // dry run stream->enqueue(kernel, grid, {nthreads, 1, 1}); stream->synchronize(); // benchmark double ts = bench([&](){stream->enqueue(kernel, grid, {nthreads, 1, 1});}, [&](){ stream->synchronize(); }, *context->device()); return 2.*M*N*K / ts * 1e-3; }; std::string src = triton::dnn::conv::src(); // jit.autotune("conv", src.c_str(), benchmark); jit.add_module("conv", src.c_str(), triton::dnn::conv::default_params()); triton::driver::kernel* kernel = jit.get_function("conv"); triton::jit::launch_information info = jit.get_launch_info("conv"); std::cout << "Performance: " << benchmark(kernel, info) << " TFLOPS " << std::endl; stream->read(dc, true, 0, hc); cpp_conv_nchw(NC, B, NF, D, H, W, T, R, S, pad_d, pad_h, pad_w, stride_d, stride_h, stride_w, RD, RH, RW, rc, ha, hb); for(size_t i = 0; i < M*N; i++) if(std::abs(hc[i] - rc[i])/std::max(hc[i], rc[i]) > 1e-4){ std::cout << i << " " << hc[i] << " " << rc[i] << std::endl; exit(EXIT_FAILURE); } std::cout << "Pass!" << std::endl; }