import torch import triton # source-code for Triton compute kernel # here we just copy-paste the above code without the extensive comments. # you may prefer to store it in a .c file and load it from there instead. _src = """ __global__ void add(float* z, float* x, float* y, int N){ // program id int pid = get_program_id(0); // create arrays of pointers int offset[BLOCK] = pid * BLOCK + 0 ... BLOCK; float* pz[BLOCK] = z + offset; float* px[BLOCK] = x + offset; float* py[BLOCK] = y + offset; // bounds checking bool check[BLOCK] = offset < N; // write-back *?(check)pz = *?(check)px + *?(check)py; } """ # This function returns a callable `triton.kernel` object # created from the above source code. # For portability, we maintain a cache of kernels for different `torch.device` # We compile the kernel with -DBLOCK=1024 _kernels = dict() def make_add_kernel(device): if device not in _kernels: defines = {'BLOCK': 1024} autotune_vals = [({'BLOCK': '1024'}, 4), ({'BLOCK': '2048'}, 4)] autotune_key = ["N"] _kernels[device] = triton.kernel(_src, device=device, defines=defines, autotune_vals=autotune_vals, autotune_key=autotune_key) return _kernels[device] # This is a standard torch custom autograd Function # The only difference is that we can now use the above kernel # in the `forward` and `backward` functions.` class _add(torch.autograd.Function): @staticmethod def forward(ctx, x, y): # constraints of the op assert x.dtype == torch.float32 # *allocate output* z = torch.empty_like(x) # *create launch grid*: # this is a function which takes compilation parameters `opt` # as input and returns a tuple of int (i.e., launch grid) for the kernel. # triton.cdiv is a shortcut for ceil division: # triton.cdiv(a, b) = (a + b - 1) // b grid = lambda opt: (triton.cdiv(z.shape[0], opt.BLOCK), ) # *launch kernel*: # pointer to the data of torch tensors can be retrieved with # the `.data_ptr()` method kernel = make_add_kernel(z.device) kernel(z.data_ptr(), x.data_ptr(), y.data_ptr(), z.shape[0], grid=grid) return z # Just like we standard PyTorch ops # We use the `.apply` method to create a # callable object for our function add = _add.apply torch.manual_seed(0) x = torch.rand(32, device='cuda') y = torch.rand(32, device='cuda') za = x + y zb = add(x, y) print(za) print(zb) print(f'The maximum difference between torch and triton is ' f'{torch.max(torch.abs(za - zb))}') th_ms = triton.testing.do_bench(lambda: x + y) tr_ms = triton.testing.do_bench(lambda: add(x, y)) print(th_ms, tr_ms)