Note
Click here to download the full example code
Fused Softmax¶
In this tutorial, you will write a fused softmax layer that outperform’s PyTorch implementation and learn about:
The benefits of kernel fusion for bandwidth-bound operations.
The syntax and usage of reduction operators in Triton.
The automatic vectorization capabilities of the Triton compiler.
Motivations¶
Custom GPU kernels for elementwise additions are educationally valuable but won’t get you very far in practice. Let us consider instead the case of a simple (numerically stabilized) softmax operation:
import torch
# Compute the row-wise softmax of x
def naive_softmax(x):
# read MN elements ; write M elements
x_max = torch.max(x, axis=1)[0]
# read 2MN elements ; write MN elements
z = x - x_max[:, None]
# read MN elements ; write MN elements
numerator = torch.exp(x)
# read MN elements ; write M elements
denominator = torch.sum(numerator, axis=1)
# read 2MN elements ; write MN elements
ret = numerator / denominator[:, None]
# in total: read 7MN elements ; wrote 3MN + 2M elements
return ret
When implemented naively in pytorch, computing y = naive_softmax(x)
for \(x \in R^{M \times N}\) requires reading \(7MN\) elements from DRAM and writing back \(3MN + 2M\) elements.
Instead, we want to write a custom “fused” pytorch operators that only reads X once and does all the necessary computations on-chip.
This would require reading and writing back only \(MN\) bytes, so we could expect a theoretical speed-up of 5x.
In practice, though, we expect less because our kernel will spend some time computing exponentials and moving data around in shared memory.
Compute Kernel¶
Our softmax kernel works as follows: each program loads a row of X and writes back a normalized row of Y. Note that one important limitation of Triton is that each block must have a power-of-two number of elements, which means that we need to guard the memory operations properly if we want to handle any possible input shapes:
__global__ void softmax(float* Y, float* X, int stride_xm, int stride_ym, int M, int N){ // row index int m = get_program_id(0); // column indices int n [BLOCK] = 0 ... BLOCK; // the memory address of all the elements // that we want to load can be computed as follows float* px [BLOCK] = X + m*stride_xm + n; // because BLOCK has to be a power of two // (per Triton-C specs), it is important // to guard each memory operation with predicates // or we will read out of bounds bool check[BLOCK] = n < N; float x [BLOCK] = check ? *px : -F32_INFINITY; // syntax for reduction in Triton is: // x[..., OPERATOR, ...] // ^ // index // The operators currently supported are {min, max, +} float z [BLOCK] = x - x[max]; // The exponential in Triton is fast but approximate // (i.e., like __expf in CUDA) float num [BLOCK] = exp(z); float denom = num[+]; // The result of the reduction is now stored in y float y [BLOCK] = num / denom; // We write it back float* py [BLOCK] = Y + m*stride_ym + n; *?(check)py = y; }
Torch Bindings¶
We need to make sure that BLOCK is the smallest power of two greater than the number of rows N of the input matrix. Different values of BLOCK will result in different kernels
import torch
import triton
# Source code for the Triton kernel
_src = """
__global__ void softmax(float* Y, float* X, int stride_ym, int stride_xm, int M, int N){
int m = get_program_id(0);
int n [BLOCK] = 0 ... BLOCK;
float* px [BLOCK] = X + m*stride_xm + n;
bool check[BLOCK] = n < N;
float x [BLOCK] = check ? *px : -F32_INFINITY;
float z [BLOCK] = x - x[max];
float num [BLOCK] = exp(z);
float denom = num[+];
float y [BLOCK] = num / denom;
float* py [BLOCK] = Y + m*stride_ym + n;
*?(check)py = y;
}
"""
def next_power_of_2(n):
n -= 1
n |= n >> 1
n |= n >> 2
n |= n >> 4
n |= n >> 8
n |= n >> 16
n += 1
return n
_kernels = dict()
def make_kernel(N, device):
BLOCK = next_power_of_2(N)
key = (BLOCK, device)
if key not in _kernels:
defines = {'BLOCK': BLOCK}
_kernels[key] = triton.kernel(_src, device=device, defines=defines)
return _kernels[key]
class _softmax(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
# constraints of the op
assert x.dtype == torch.float32
y = torch.empty_like(x)
# *create launch grid*:
# here we just launch a grid of M programs
M, N = y.shape
grid = lambda opt: (M, )
# *launch kernel*:
kernel = make_kernel(N, y.device)
kernel(y.data_ptr(), x.data_ptr(), y.stride(0), x.stride(0), M, N, grid=grid)
return y
softmax = _softmax.apply
Unit Test¶
x = torch.randn(1823, 781, device='cuda')
y_tri = softmax(x)
y_ref = torch.softmax(x, axis=1)
print(y_tri)
print(y_ref)
print(torch.allclose(y_tri, y_ref))
Out:
tensor([[2.0935e-03, 6.4551e-04, 9.8605e-05, ..., 3.3981e-04, 2.7386e-03,
9.1986e-05],
[7.0923e-04, 6.7521e-04, 5.1366e-04, ..., 9.8392e-04, 2.6547e-04,
6.9062e-04],
[1.4032e-04, 5.8826e-04, 1.1694e-03, ..., 6.6423e-04, 1.8178e-04,
6.7049e-04],
...,
[1.1767e-03, 4.2703e-03, 6.0596e-04, ..., 9.5274e-04, 1.1681e-03,
6.4924e-04],
[1.0772e-04, 7.4854e-04, 3.1912e-03, ..., 2.4980e-04, 1.9012e-03,
5.2567e-04],
[2.8518e-03, 8.1899e-04, 7.7046e-04, ..., 1.3403e-03, 5.3167e-04,
4.3268e-04]], device='cuda:0')
tensor([[2.0935e-03, 6.4551e-04, 9.8605e-05, ..., 3.3981e-04, 2.7386e-03,
9.1986e-05],
[7.0923e-04, 6.7521e-04, 5.1366e-04, ..., 9.8392e-04, 2.6547e-04,
6.9062e-04],
[1.4032e-04, 5.8826e-04, 1.1694e-03, ..., 6.6423e-04, 1.8178e-04,
6.7049e-04],
...,
[1.1767e-03, 4.2703e-03, 6.0596e-04, ..., 9.5274e-04, 1.1681e-03,
6.4924e-04],
[1.0772e-04, 7.4854e-04, 3.1912e-03, ..., 2.4980e-04, 1.9012e-03,
5.2567e-04],
[2.8518e-03, 8.1899e-04, 7.7046e-04, ..., 1.3403e-03, 5.3167e-04,
4.3268e-04]], device='cuda:0')
True
Seems to work!
Benchmarking¶
import matplotlib.pyplot as plt
M = 4096
Ns = [128 * i for i in range(2, 50)]
tri_ms = []
ref_ms = []
def_ms = []
for N in Ns:
x = torch.randn(M, N, device='cuda', dtype=torch.float32)
gbps = lambda ms: x.nelement() * x.element_size() * 1e-9 / (ms * 1e-3)
tri_ms += [gbps(triton.testing.do_bench(lambda: softmax(x)))]
ref_ms += [gbps(triton.testing.do_bench(lambda: torch.softmax(x, axis=1)))]
def_ms += [gbps(triton.testing.do_bench(lambda: naive_softmax(x)))]
plt.xlabel('N')
plt.ylabel('Bandwidth (GB/s)')
plt.plot(Ns, tri_ms, label='Triton')
plt.plot(Ns, ref_ms, label='Torch')
plt.plot(Ns, def_ms, label='Naive')
plt.legend()
plt.show()

Total running time of the script: ( 0 minutes 5.758 seconds)