#include "triton/Dialect/TritonGPU/IR/Dialect.h" #include "triton/Dialect/TritonGPU/Transforms/Passes.h" #include "mlir/IR/BlockAndValueMapping.h" //===----------------------------------------------------------------------===// // // This file implements loop software pipelining // The implementation here is inspired by the pipeline pass in Triton (-v2.0) // and SCF's LoopPipelining. // //===----------------------------------------------------------------------===// using namespace mlir; #define GEN_PASS_CLASSES #include "triton/Dialect/TritonGPU/Transforms/Passes.h.inc" namespace { class LoopPipeliner { /// comments on numStages: /// [0, numStages-1) are in the prologue /// numStages-1 is appended after the loop body int numStages; /// cache forOp we are working on scf::ForOp forOp; /// cahce YieldOp for this forOp scf::YieldOp yieldOp; /// loads to be pipelined SetVector loads; /// value (in loop) => value at stage N DenseMap> valueMapping; /// Block arguments that loads depend on DenseSet depArgs; /// Operations (inside the loop body) that loads depend on DenseSet depOps; /// collect values that v depends on and are defined inside the loop void collectDeps(Value v, int stages, DenseSet &deps); void setValueMapping(Value origin, Value newValue, int stage); public: LoopPipeliner(scf::ForOp forOp, int numStages) : forOp(forOp), numStages(numStages) { // cache yieldOp yieldOp = cast(forOp.getBody()->getTerminator()); } /// Collect loads to pipeline. Return success if we can pipeline this loop LogicalResult initialize(); /// emit pipelined loads (before loop body) void emitPrologue(); /// create the new ForOp (add new args & insert prefetched ops) scf::ForOp createNewForOp(); friend class PipelinePass; }; // helpers void LoopPipeliner::setValueMapping(Value origin, Value newValue, int stage) { if (valueMapping.find(origin) == valueMapping.end()) valueMapping[origin] = SmallVector(numStages); valueMapping[origin][stage] = newValue; } void LoopPipeliner::collectDeps(Value v, int stages, DenseSet &deps) { // Loop-invarant value. skip if (v.getParentRegion() != &forOp.getLoopBody()) return; // Since we only need to peel the loop numStages-1 times, don't worry about // depends that are too far away if (stages < 0) return; if (auto arg = v.dyn_cast()) { deps.insert(v); // Note: we have iv as the first arg, so the op idx is arg.getArgNumber()-1 collectDeps(yieldOp->getOperand(arg.getArgNumber() - 1), stages-1, deps); } else { // value // v might be in deps, but we still need to visit v. // This is because v might depends on value in previous iterations deps.insert(v); for (Value op : v.getDefiningOp()->getOperands()) collectDeps(op, stages, deps); } } /// A load instruction can be pipelined if: /// - the load doesn't depend on any other loads (after loop peeling) /// - (?) this load is not a loop-invariant value (we should run LICM before /// this pass?) LogicalResult LoopPipeliner::initialize() { Block *loop = forOp.getBody(); // can we use forOp.walk(...) here? SmallVector allLoads; for (Operation &op : *loop) if (auto loadOp = dyn_cast(&op)) allLoads.push_back(loadOp); // Early stop: no need to continue if there is no load in the loop. if (allLoads.empty()) return failure(); // load => values that it depends on DenseMap> loadDeps; for (triton::LoadOp loadOp : allLoads) { DenseSet deps; for (Value op : loadOp->getOperands()) collectDeps(op, numStages - 1, deps); loadDeps[loadOp] = deps; } // for (triton::LoadOp loadOp : allLoads) { // llvm::errs() << loadOp << " depends on: #" << loadDeps[loadOp].size() << " values\n"; // for (Value dep : loadDeps[loadOp]) // llvm::errs() << dep << "\n"; // llvm::errs() << "\n"; // } // Don't pipeline loads that depend on other loads // (Because if a load depends on another load, this load needs to wait on the // other load in the prologue, which is against the point of the pipeline // pass) for (triton::LoadOp loadOp : allLoads) { bool isCandiate = true; for (triton::LoadOp other : allLoads) { if (loadDeps[loadOp].contains(other)) { isCandiate = false; break; } } if (isCandiate) loads.insert(loadOp); } // we have some loads to pipeline if (!loads.empty()) { // update depArgs & depOps for (Value loadOp : loads) { for (Value dep : loadDeps[loadOp]) { // TODO: we should record the stage that the value is depended on if (auto arg = dep.dyn_cast()) depArgs.insert(arg); else depOps.insert(dep.getDefiningOp()); } } return success(); } // llvm::errs() << allLoads.size() << " loads inside the loop\n" // << loads.size() << " loads to be pipelined\n"; return failure(); } void LoopPipeliner::emitPrologue() { // llvm::errs() << "to pipeline...\n"; // for (Value load : loads) // llvm::errs() << load << "\n"; // TODO: should we use rewriter here? OpBuilder builder(forOp); for (BlockArgument &arg : forOp.getRegionIterArgs()) { OpOperand &operand = forOp.getOpOperandForRegionIterArg(arg); setValueMapping(arg, operand.get(), 0); } // prologue from [0, numStage-1) Value iv = forOp.getLowerBound(); for (int stage = 0; stage < numStages - 1; ++stage) { // special handling for induction variable as the increment is implicit if (stage != 0) iv = builder.create(iv.getLoc(), iv, forOp.getStep()); setValueMapping(forOp.getInductionVar(), iv, stage); // special handling for loop condition as there is no condition in ForOp Value loopCond = builder.create( iv.getLoc(), arith::CmpIPredicate::slt, iv, forOp.getUpperBound()); // rematerialize peeled values SmallVector orderedDeps; for (Operation &op : forOp.getLoopBody().front()) { if (depOps.contains(&op)) orderedDeps.push_back(&op); else if (loads.contains(op.getResult(0))) orderedDeps.push_back(&op); } assert(depOps.size() + loads.size() == orderedDeps.size() && "depOps contains invalid values"); for (Operation *op : orderedDeps) { Operation *newOp = nullptr; if (loads.contains(op->getResult(0))) { // load => copy async // TODO: check if the hardware supports copyasync if (auto loadOp = llvm::dyn_cast(op)) { newOp = builder.create( op->getLoc(), op->getResult(0).getType(), loadOp.ptr(), loadOp.mask(), loadOp.other(), loadOp.cache(), loadOp.evict(), loadOp.isVolatile() ); } else llvm_unreachable("This should be LoadOp"); } else newOp = builder.clone(*op); // llvm::errs() << "cloning " << *op << "\n"; for (unsigned opIdx = 0; opIdx < op->getNumOperands(); ++opIdx) { auto it = valueMapping.find(op->getOperand(opIdx)); if (it != valueMapping.end()) { Value v = it->second[stage]; assert(v); newOp->setOperand(opIdx, v); } // else, op at opIdx is a loop-invariant value } // TODO: if this is a load, we need to update the mask // update mapping of results for (unsigned dstIdx : llvm::seq(unsigned(0), op->getNumResults())) { setValueMapping(op->getResult(dstIdx), newOp->getResult(dstIdx), stage); // update mapping for loop-carried values (args) for (OpOperand &operand : yieldOp->getOpOperands()) { if (operand.get() == op->getResult(dstIdx)) setValueMapping(forOp.getRegionIterArgs()[operand.getOperandNumber()], newOp->getResult(dstIdx), stage + 1); } } } } } scf::ForOp LoopPipeliner::createNewForOp() { OpBuilder builder(forOp); // order of new args: // (original args), // for each load result x: // (x at stage[0, numStages-1)) // (depArgs at stage numStages-1) // (iv at stage numStages-1) SmallVector newLoopArgs; // We need this to update operands for yield // original block arg => new arg's idx DenseMap depArgsIdx; for (auto v : forOp.getIterOperands()) newLoopArgs.push_back(v); size_t loadIdx = newLoopArgs.size(); for (Value loadOp : loads) for (int i = 0; i < numStages - 1; ++i) newLoopArgs.push_back(valueMapping[loadOp][i]); size_t depArgsBeginIdx = newLoopArgs.size(); for (BlockArgument depArg : depArgs) { depArgsIdx[depArg] = newLoopArgs.size(); newLoopArgs.push_back(valueMapping[depArg][numStages-1]); } size_t nextIVIdx = newLoopArgs.size(); newLoopArgs.push_back(valueMapping[forOp.getInductionVar()][numStages-2]); for (size_t i = 0; i < newLoopArgs.size(); ++i) assert(newLoopArgs[i]); // llvm::errs() << "mapped load is:\n" << newLoopArgs[loadIdx] << "\n\n"; // 1. signature of the new ForOp auto newForOp = builder.create(forOp.getLoc(), forOp.getLowerBound(), forOp.getUpperBound(), forOp.getStep(), newLoopArgs); // 2. body of the new ForOp builder.setInsertionPointToStart(newForOp.getBody()); BlockAndValueMapping mapping; for (const auto &arg : llvm::enumerate(forOp.getRegionIterArgs())) mapping.map(arg.value(), newForOp.getRegionIterArgs()[arg.index()]); for (Operation &op : forOp.getBody()->without_terminator()) { Operation *newOp = builder.clone(op, mapping); // update mapping of results for (unsigned dstIdx : llvm::seq(unsigned(0), op.getNumResults())) mapping.map(op.getResult(dstIdx), newOp->getResult(dstIdx)); } // 3. replace loads with args for (size_t idx = 0; idx < loads.size(); ++idx) { Value load = loads[idx]; mapping.lookup(load).replaceAllUsesWith( newForOp.getRegionIterArgs()[loadIdx+idx]); } // 4. prefetch the next iteration SmallVector orderedDeps; for (Operation &op : forOp.getLoopBody().front()) { if (depOps.contains(&op)) orderedDeps.push_back(&op); else if (loads.contains(op.getResult(0))) orderedDeps.push_back(&op); } assert(depOps.size() + loads.size() == orderedDeps.size() && "depOps contains invalid values"); BlockAndValueMapping nextMapping; DenseMap depArgsMapping; size_t argIdx = 0; for (BlockArgument arg : depArgs) { nextMapping.map(arg, newForOp.getRegionIterArgs()[argIdx + depArgsBeginIdx]); ++argIdx; } // special handling for iv & loop condition Value nextIV = builder.create(newForOp.getInductionVar().getLoc(), newForOp.getRegionIterArgs()[nextIVIdx], newForOp.getStep()); Value nextLoopCond = builder.create( nextIV.getLoc(), arith::CmpIPredicate::slt, nextIV, newForOp.getUpperBound()); for (Operation *op : orderedDeps) { Operation *nextOp = nullptr; // update loading mask if (loads.contains(op->getResult(0))) { auto loadOp = llvm::cast(op); Value mask = loadOp.mask(); Value splatCond = builder.create(mask.getLoc(), mask.getType(), nextLoopCond); Value newMask = builder.create(mask.getLoc(), splatCond, nextMapping.lookupOrDefault(mask)); // if mask is defined outside the loop, don't update the map more than once if (!(forOp.isDefinedOutsideOfLoop(mask) && nextMapping.contains(mask))) nextMapping.map(mask, newMask); // TODO: more elegant way to do this? nextOp = builder.create( op->getLoc(), op->getResult(0).getType(), nextMapping.lookupOrDefault(loadOp.ptr()), nextMapping.lookupOrDefault(loadOp.mask()), nextMapping.lookupOrDefault(loadOp.other()), loadOp.cache(), loadOp.evict(), loadOp.isVolatile() ); } else nextOp = builder.clone(*op, nextMapping); // llvm::errs() << "epilogue cloning...: " << *op << "\n"; // update mapping of results for (unsigned dstIdx : llvm::seq(unsigned(0), op->getNumResults())) { nextMapping.map(op->getResult(dstIdx), nextOp->getResult(dstIdx)); // if this is a loop-carried value, update the mapping for yield auto originYield = cast(forOp.getBody()->getTerminator()); for (OpOperand &operand : originYield->getOpOperands()) { if (operand.get() == op->getResult(dstIdx)) { size_t originIdx = operand.getOperandNumber(); size_t newArgIdx = depArgsIdx[forOp.getRegionIterArgs()[originIdx]]; BlockArgument newArg = newForOp.getRegionIterArgs()[newArgIdx]; depArgsMapping[newArg] = nextOp->getResult(dstIdx); } } } } // Finally, the YieldOp, need to sync with the order of newLoopArgs SmallVector yieldValues; for (Value v : forOp.getBody()->getTerminator()->getOperands()) yieldValues.push_back(mapping.lookup(v)); // for (int i = 1; i < numStages - 1; ++i) // yieldValues.push_back(newForOp.getRegionIterArgs()[aArgIdx + i]); // yieldValues.push_back(nextMapping.lookup(info.dotOp.a())); // for (int i = 1; i < numStages - 1; ++i) // yieldValues.push_back(newForOp.getRegionIterArgs()[bArgIdx + i]); // yieldValues.push_back(nextMapping.lookup(info.dotOp.b())); for (size_t idx = 0; idx < loads.size(); ++idx) { Value load = loads[idx]; for (int stage = 1; stage < numStages - 1; ++stage) { yieldValues.push_back(newForOp.getRegionIterArgs()[ loadIdx + idx*(numStages-1) + stage-1 ]); } yieldValues.push_back(nextMapping.lookup(load)); } for (size_t i = depArgsBeginIdx; i < nextIVIdx; ++i) yieldValues.push_back(depArgsMapping.lookup(newForOp.getRegionIterArgs()[i])); yieldValues.push_back(nextIV); builder.setInsertionPointToEnd(newForOp.getBody()); builder.create(forOp.getBody()->getTerminator()->getLoc(), yieldValues); return newForOp; } // ref: mlir/lib/Dialect/SCF/Transforms/LoopPipelining.cpp struct PipelinePass : public TritonGPUPipelineBase { PipelinePass() = default; PipelinePass(int numStages) { this->numStages = numStages; } void runOnOperation() override { int numStages = this->numStages; if (numStages <= 1) return; getOperation()->walk([&](scf::ForOp forOp) -> void { LoopPipeliner pipeliner(forOp, numStages); if (pipeliner.initialize().failed()) return; // llvm::errs() << "find a loop to pipeline...\n"; pipeliner.emitPrologue(); // llvm::errs() << "\nprologue emitted\n" // << *forOp->getParentOp(); scf::ForOp newForOp = pipeliner.createNewForOp(); // llvm::errs() << "new for created:\n" << newForOp << "\n" // << "inside:\n" << *newForOp->getParentOp() << "\n"; // replace the original loop for (unsigned i = 0; i < forOp->getNumResults(); ++i) forOp->getResult(i).replaceAllUsesWith(newForOp->getResult(i)); forOp->erase(); }); } }; } // anonymous namespace std::unique_ptr mlir::createTritonGPUPipelinePass(int numStages) { return std::make_unique(numStages); }