// #include "triton/codegen/pass.h" // #include "triton/codegen/target.h" #include "triton/driver/error.h" #include "triton/driver/llvm.h" #include "mlir/IR/Builders.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/Verifier.h" #include "mlir/Pass/PassManager.h" #include "mlir/Transforms/Passes.h" #include "triton/Conversion/TritonGPUToLLVM/TritonGPUToLLVM.h" #include "triton/Conversion/TritonToTritonGPU/TritonToTritonGPU.h" #include "triton/Dialect/Triton/IR/Dialect.h" #include "triton/Dialect/Triton/IR/Types.h" #include "triton/Dialect/Triton/Transforms/Passes.h" #include "triton/Dialect/TritonGPU/Transforms/Passes.h" #include "llvm/IR/LegacyPassManager.h" #include "llvm/IR/Module.h" #include "llvm/IR/Verifier.h" #include "llvm/Support/raw_ostream.h" #include "Python.h" #include #include #include #include #include #include #include #include #include #include namespace py = pybind11; // namespace ir = triton::ir; namespace drv = triton::driver; /*****************************************************************************/ /* Python bindings for triton::driver */ /*****************************************************************************/ // information query template int cuGetInfo(CUdevice device) { int res; drv::dispatch::cuDeviceGetAttribute(&res, attr, device); return res; } template int hipGetInfo(hipDevice_t device) { int res; drv::dispatch::hipDeviceGetAttribute(&res, attr, device); return res; } enum backend_t { HOST, CUDA, ROCM, }; void cu_enable_peer_access(uint64_t peer_ptr) { CUcontext context; drv::dispatch::cuPointerGetAttribute(&context, CU_POINTER_ATTRIBUTE_CONTEXT, peer_ptr); try { drv::dispatch::cuCtxEnablePeerAccess(context, 0); } catch (drv::exception::cuda::peer_access_already_enabled) { } } void host_enqueue(uint64_t stream, uint64_t kernel, uint64_t grid_0, uint64_t grid_1, uint64_t grid_2, uint64_t block_0, uint64_t block_1, uint64_t block_2, void *args_ptr, size_t args_size, int64_t shared_mem) { throw std::runtime_error("unsupported"); // auto hst = kernel->module()->hst(); // hst_->futures->reserve(hst_->futures->size() + grid[0]*grid[1]*grid[2]); // char* params = new char[args_size]; // std::memcpy((void*)params, (void*)args, args_size); // for(size_t i = 0; i < grid[0]; i++) // for(size_t j = 0; j < grid[1]; j++) // for(size_t k = 0; k < grid[2]; k++) // hst_->futures->emplace_back(hst_->pool->enqueue(hst->fn, // (char**)params, int32_t(i), int32_t(j), int32_t(k))); } void cu_enqueue(uint64_t stream, uint64_t kernel, uint64_t grid_0, uint64_t grid_1, uint64_t grid_2, uint64_t block_0, uint64_t block_1, uint64_t block_2, void *args_ptr, size_t args_size, int64_t shared_mem) { void *config[] = {CU_LAUNCH_PARAM_BUFFER_POINTER, (void *)args_ptr, CU_LAUNCH_PARAM_BUFFER_SIZE, &args_size, CU_LAUNCH_PARAM_END}; drv::dispatch::cuLaunchKernel((CUfunction)kernel, grid_0, grid_1, grid_2, block_0, block_1, block_2, shared_mem, (CUstream)stream, nullptr, config); } void hip_enqueue(uint64_t stream, uint64_t kernel, uint64_t grid_0, uint64_t grid_1, uint64_t grid_2, uint64_t block_0, uint64_t block_1, uint64_t block_2, void *args_ptr, size_t args_size, int64_t shared_mem) { void *config[] = {HIP_LAUNCH_PARAM_BUFFER_POINTER, (void *)args_ptr, HIP_LAUNCH_PARAM_BUFFER_SIZE, &args_size, HIP_LAUNCH_PARAM_END}; drv::dispatch::hipModuleLaunchKernel( (hipFunction_t)kernel, grid_0, grid_1, grid_2, block_0, block_1, block_2, shared_mem, (hipStream_t)stream, nullptr, config); } long pow2_divisor(long N) { if (N % 16 == 0) return 16; if (N % 8 == 0) return 8; if (N % 4 == 0) return 4; if (N % 2 == 0) return 2; return 1; } // Returns something like "int16", whether dtype is a torch.dtype or // triton.language.dtype. std::string dtype_cache_key_part(const py::object &dtype) { if (py::hasattr(dtype, "cache_key_part")) { // Presumed to be a triton.language.dtype. return std::string(py::str(py::getattr(dtype, "cache_key_part"))); } else { // Remove 'torch.' prefix from repr of torch.dtype. py::object repr = py::repr(dtype); size_t repr_len = PyUnicode_GET_LENGTH(repr.ptr()); const char *repr_ptr = (const char *)PyUnicode_1BYTE_DATA(repr.ptr()); if (repr_len <= 6 || strncmp(repr_ptr, "torch.", 6)) { throw std::logic_error("invalid dtype: " + std::string(repr_ptr, repr_len)); } return std::string(repr_ptr + 6, repr_len - 6); } } size_t get_pointer_range_size(uint64_t addr) { if (addr == 0) return 0; size_t size; drv::dispatch::cuPointerGetAttribute(&size, CU_POINTER_ATTRIBUTE_RANGE_SIZE, (CUdeviceptr)addr); return size; } // Launch void parse_args(py::list &args, py::list do_not_specialize, const std::string &func_key, py::list &arg_names, std::string &cache_key, std::string ¶ms, size_t ¶ms_size, py::dict constants, int num_warps, int num_stages) { size_t len = PyList_Size(args.ptr()); params.reserve(8 * len); // 8 max bytes by argument char *params_ptr = ¶ms[0]; cache_key = func_key; cache_key += "-" + std::to_string(num_warps); cache_key += "-" + std::to_string(num_stages); cache_key += "-"; for (int i = 0; i < len; i++) { cache_key += "_"; py::int_ py_i = py::int_(i); bool specialize = !do_not_specialize.contains(py_i); py::object arg = args[i]; auto arg_ptr = arg.ptr(); // argument is `long` if (PyLong_Check(arg_ptr)) { int overflow; long long value = PyLong_AsLongLongAndOverflow(arg_ptr, &overflow); // values equal to 1 are specialized if (specialize && (value == 1)) { cache_key += "1"; continue; } // int32, uint32, int64, and uint64 have different kernels if (!overflow && -0x8000'0000LL <= value && value <= 0x7FFF'FFFFLL) { cache_key += "int32"; params_ptr = (char *)(((uintptr_t)params_ptr + 3) & (-4)); std::memcpy(params_ptr, &value, 4); params_ptr += 4; } else if (!overflow && 0x8000'0000LL <= value && value <= 0xFFFF'FFFFLL) { cache_key += "uint32"; params_ptr = (char *)(((uintptr_t)params_ptr + 3) & (-4)); std::memcpy(params_ptr, &value, 4); params_ptr += 4; } else if (!overflow) { cache_key += "int64"; params_ptr = (char *)(((uintptr_t)params_ptr + 7) & (-8)); std::memcpy(params_ptr, &value, 8); params_ptr += 8; } else { if (PyErr_Occurred()) { throw std::logic_error("An error occurred?"); } unsigned long long unsigned_value = PyLong_AsUnsignedLongLong(arg_ptr); if (PyErr_Occurred()) { throw std::runtime_error("integer overflow in argument: " + std::string(py::str(arg))); } cache_key += "uint64"; params_ptr = (char *)(((uintptr_t)params_ptr + 7) & (-8)); std::memcpy(params_ptr, &unsigned_value, 8); params_ptr += 8; } if (!specialize) continue; // values divisible by small powers of 2 are specialized cache_key += "[multipleof("; cache_key += std::to_string(pow2_divisor(value)); cache_key += ")]"; continue; } // argument is `float` if (PyFloat_Check(arg_ptr)) { cache_key += "float32"; float value = PyFloat_AsDouble(arg_ptr); params_ptr = (char *)(((uintptr_t)params_ptr + 3) & (-4)); std::memcpy(params_ptr, &value, 4); params_ptr += 4; continue; } // argument is `bool` if (PyBool_Check(arg_ptr)) { cache_key += "bool"; bool value = arg_ptr == Py_True ? true : false; std::memcpy(params_ptr, &value, 1); params_ptr += 1; continue; } // argument is tensor if (py::hasattr(arg, "data_ptr")) { py::object data_ptr = arg.attr("data_ptr")(); long value = data_ptr.cast(); params_ptr = (char *)(((uintptr_t)params_ptr + 7) & (-8)); // copy param std::memcpy(params_ptr, &value, 8); params_ptr += 8; // udpate cache key cache_key += dtype_cache_key_part(arg.attr("dtype")); cache_key += "*"; cache_key += "[multipleof("; size_t range_size = get_pointer_range_size(value); cache_key += std::to_string( std::min(pow2_divisor(value), pow2_divisor(range_size))); cache_key += ")]"; continue; } // argument is `constexpr` if (py::hasattr(arg, "value")) { py::object value = arg.attr("value"); py::object name = arg_names[i]; constants[name] = value; py::object repr = py::repr(value); const char *start = (const char *)PyUnicode_1BYTE_DATA(repr.ptr()); size_t len = PyUnicode_GET_LENGTH(repr.ptr()); cache_key += std::string(start, len); continue; } std::string ty_str = arg.attr("__class__").attr("__name__").cast(); if (ty_str == "NoneType") { cache_key += "None"; continue; } std::string err_msg = "Received type '" + ty_str + "' for argument " + std::to_string(i) + "." + " Only int, float, bool, torch.Tensor, and " "triton.language.constexpr are supported."; throw std::runtime_error(err_msg); } params_size = (std::ptrdiff_t)(params_ptr - ¶ms[0]); } // void init_triton_runtime(py::module &&m) { // m.def("current_stream", [](uint64_t device){ // return (uint64_t)(c10::cuda::getCurrentCUDAStream(device).stream()); // }); // wrap backend_t py::enum_(m, "backend") .value("HOST", HOST) .value("CUDA", CUDA) .value("ROCM", ROCM) .export_values(); // enable peer-to-peer m.def("enable_peer_access", [](backend_t backend, uint64_t peer_ptr) { if (backend != CUDA) throw std::runtime_error("P2P only supported on CUDA devices!"); cu_enable_peer_access(peer_ptr); }); // get range size for the given pointer m.def("get_pointer_range_size", &get_pointer_range_size); // cache key m.def("launch", [](py::list args, py::list do_not_specialize, const std::string &func_key, py::list &arg_names, py::object device, py::int_ stream, py::dict bin_cache, py::int_ num_warps, py::int_ num_stages, py::function add_to_cache, py::object grid) { // parse arguments to compute cache key, compile-time constants and packed // kernel arguments long _num_warps = PyLong_AsLong(num_warps.ptr()); long _num_stages = PyLong_AsLong(num_stages.ptr()); std::string cache_key; std::string params; size_t params_size; py::dict constants; parse_args(args, do_not_specialize, func_key, arg_names, cache_key, params, params_size, constants, _num_warps, _num_stages); // get cached binary py::str key(cache_key); py::bool_ noop = false; if (!bin_cache.contains(key)) { noop = add_to_cache(key, args, device, num_warps, num_stages); } if (noop) return (py::object)py::none(); py::object bin = bin_cache[key]; // get grid py::sequence seq; if (!PySequence_Check(grid.ptr())) seq = grid(constants); else seq = grid; int size = seq.size(); int grid_0 = py::cast(seq[0]); int grid_1 = size < 2 ? 1 : py::cast(seq[1]); int grid_2 = size < 3 ? 1 : py::cast(seq[2]); // enqueue uint64_t kernel = py::cast(bin.attr("kernel")); uint64_t shared_mem = py::cast(bin.attr("shared_mem")); // actually launch void *config[] = {CU_LAUNCH_PARAM_BUFFER_POINTER, params.data(), CU_LAUNCH_PARAM_BUFFER_SIZE, ¶ms_size, CU_LAUNCH_PARAM_END}; uint64_t _stream = PyLong_AsLong(stream.ptr()); if (grid_0 * grid_1 * grid_2 > 0) { // release the gil in case the enqueue blocks // cuda will block if too many ops are enqueued py::gil_scoped_release allow_threads; drv::dispatch::cuLaunchKernel((CUfunction)kernel, grid_0, grid_1, grid_2, _num_warps * 32, 1, 1, shared_mem, (CUstream)_stream, nullptr, config); } return bin; }); m.def("cc", [](backend_t backend, uint64_t device) -> int { if (backend == CUDA) { CUdevice dev = (CUdevice)device; int major = cuGetInfo(dev); int minor = cuGetInfo(dev); return major * 10 + minor; } return -1; }); // query maximum shared memory m.def("max_shared_memory", [](backend_t backend, uint64_t device) { if (backend == HOST) return 0; if (backend == CUDA) return cuGetInfo( device); if (backend == ROCM) return hipGetInfo(device); return -1; }); // query DRAM & L2 cache m.def("memory_clock_rate", [](backend_t backend, uint64_t device) { if (backend == CUDA) return cuGetInfo(device); return -1; }); m.def("global_memory_bus_width", [](backend_t backend, uint64_t device) { if (backend == CUDA) return cuGetInfo(device); return -1; }); m.def("l2_cache_size", [](backend_t backend, uint64_t device) { if (backend == CUDA) return cuGetInfo(device); return -1; }); // query clock rate (in kilohertz) m.def("clock_rate", [](backend_t backend, uint64_t device) { if (backend == CUDA) return cuGetInfo(device); return -1; }); m.def("num_sm", [](backend_t backend, uint64_t device) { if (backend == CUDA) return cuGetInfo(device); return -1; }); // enqueue m.def("enqueue", [](backend_t backend, uint64_t stream, uint64_t kernel, uint64_t grid_0, uint64_t grid_1, uint64_t grid_2, uint64_t block_0, uint64_t block_1, uint64_t block_2, const std::string &args, int64_t shared_mem) { void *args_ptr = (void *)args.data(); size_t args_size = args.size(); // release the gil in case the enqueue blocks // cuda will block if too many ops are enqueued py::gil_scoped_release allow_threads; if (backend == HOST) host_enqueue(stream, kernel, grid_0, grid_1, grid_2, block_0, block_1, block_2, args_ptr, args_size, shared_mem); if (backend == CUDA) cu_enqueue(stream, kernel, grid_0, grid_1, grid_2, block_0, block_1, block_2, args_ptr, args_size, shared_mem); if (backend == ROCM) hip_enqueue(stream, kernel, grid_0, grid_1, grid_2, block_0, block_1, block_2, args_ptr, args_size, shared_mem); }); } /*****************************************************************************/ /* Python bindings for triton::codegen */ /*****************************************************************************/ typedef std::map asm_map_t; // --------------------------------------- // Load provided assembly code into driver // --------------------------------------- // CUDA std::tuple cu_load_binary(const std::string &name, asm_map_t &asm_map, size_t n_shared_bytes, uint64_t dev) { // load assembly std::string assembly; if (asm_map.find("cubin") != asm_map.end()) assembly = py::cast(asm_map["cubin"]); else assembly = py::cast(asm_map["ptx"]); // create driver handles CUfunction fun; CUmodule mod; drv::dispatch::cuModuleLoadData(&mod, assembly.c_str()); drv::dispatch::cuModuleGetFunction(&fun, mod, name.c_str()); // set dynamic shared memory if necessary int shared_optin; drv::dispatch::cuDeviceGetAttribute( &shared_optin, CU_DEVICE_ATTRIBUTE_MAX_SHARED_MEMORY_PER_BLOCK_OPTIN, dev); if (n_shared_bytes > 49152 && shared_optin > 49152) { drv::dispatch::cuFuncSetCacheConfig(fun, CU_FUNC_CACHE_PREFER_SHARED); int shared_total, shared_static; int n_spills, n_reg; drv::dispatch::cuDeviceGetAttribute( &shared_total, CU_DEVICE_ATTRIBUTE_MAX_SHARED_MEMORY_PER_MULTIPROCESSOR, dev); drv::dispatch::cuFuncGetAttribute(&shared_static, CU_FUNC_ATTRIBUTE_SHARED_SIZE_BYTES, fun); drv::dispatch::cuFuncGetAttribute(&n_spills, CU_FUNC_ATTRIBUTE_LOCAL_SIZE_BYTES, fun); drv::dispatch::cuFuncGetAttribute(&n_reg, CU_FUNC_ATTRIBUTE_NUM_REGS, fun); drv::dispatch::cuFuncSetAttribute( fun, CU_FUNC_ATTRIBUTE_MAX_DYNAMIC_SHARED_SIZE_BYTES, shared_optin - shared_static); } return std::make_tuple((uint64_t)mod, (uint64_t)fun); } // ROCM std::tuple hip_load_binary(const std::string &name, asm_map_t &asm_map, size_t n_shared_bytes, uint64_t dev) { py::bytes _assembly = asm_map["hsaco"]; std::string assembly = py::cast(_assembly); // HSA-CO -> hipModule hipModule_t mod = drv::amdgpu_to_hipmodule(assembly); // Handle to the kernel hipFunction_t fun; drv::dispatch::hipModuleGetFunction(&fun, mod, name.c_str()); // record asm return std::make_tuple((uint64_t)mod, (uint64_t)fun); } // --------------------------------------- // Compile Triton-IR to assembly // --------------------------------------- // // CUDA // std::tuple cu_compile_ttir(const std::string& // name, ir::module &ir, // uint64_t // device, int // num_warps, int // num_stages, // asm_map_t // &asm_map){ // int n_shared_bytes; // py::gil_scoped_release allow_threads; // llvm::LLVMContext ctx; // // device properties // CUdevice dev = (CUdevice)device; // size_t major = // cuGetInfo(dev); size_t minor // = cuGetInfo(dev); size_t cc = // major*10 + minor; int version; std::string ptxas_path = // drv::path_to_ptxas(version); // // Triton-IR -> NVPTX LLVM-IR // triton::codegen::nvidia_cu_target target(cc); // auto llvm = triton::codegen::add_passes_to_emit_bin(ir, ctx, &target, cc, // num_warps, num_stages, n_shared_bytes); std::string tmp; // llvm::raw_string_ostream llir(tmp); // llir << *llvm; // llir.flush(); // asm_map["llir"] = py::cast(tmp); // // LLVM-IR -> PTX // std::string ptx = drv::llir_to_ptx(llvm.get(), cc, version); // asm_map["ptx"] = py::cast(ptx); // // PTX -> Binary // std::string cubin = drv::ptx_to_cubin(ptx, ptxas_path, cc); // if(!cubin.empty()){ // py::bytes bytes(cubin); // asm_map["cubin"] = bytes; // } // return std::make_tuple(name, asm_map, n_shared_bytes); // } // // HIP // std::tuple hip_compile_ttir(const std::string& // name, ir::module &ir, // uint64_t // device, int // num_warps, // int // num_stages, // asm_map_t // &asm_map){ // llvm::LLVMContext ctx; // // Triton-IR -> NVPTX LLVM-IR // triton::codegen::amd_cl_target target; // int n_shared_bytes; // auto llvm = triton::codegen::add_passes_to_emit_bin(ir, ctx, &target, 70, // num_warps, num_stages, n_shared_bytes); std::string tmp; // llvm::raw_string_ostream llir(tmp); // llir << *llvm; // llir.flush(); // asm_map["llir"] = py::cast(tmp); // // LLVM-IR -> HSA-CO // std::string path = drv::llir_to_amdgpu(llvm.get(), "gfx908"); // asm_map["hsaco"] = py::cast(path); // return std::make_tuple(name, asm_map, n_shared_bytes); // } // void init_triton_codegen(py::module &&m) { // m.def( // "compile_ttir", [](backend_t backend, ir::module &ir, uint64_t device, // int num_warps, int num_stages) { // std::string name = ir.get_function_list()[0]->get_name(); // // record asm as we generate // asm_map_t asm_map; // std::ostringstream ttir; // ir.print(ttir); // asm_map["ttir"] = py::cast(ttir.str()); // llvm::LLVMContext ctx; // if(backend == CUDA) // return cu_compile_ttir(name, ir, device, num_warps, num_stages, // asm_map); // if(backend == ROCM) // return hip_compile_ttir(name, ir, device, num_warps, num_stages, // asm_map); // }, py::return_value_policy::take_ownership); // m.def("load_binary", [](backend_t backend, const std::string& name, // asm_map_t &asm_map, size_t n_shared_bytes, uint64_t dev){ // py::gil_scoped_release allow_threads; // if(backend == CUDA) // return cu_load_binary(name, asm_map, n_shared_bytes, dev); // if(backend == ROCM) // return hip_load_binary(name, asm_map, n_shared_bytes, dev); // }, py::return_value_policy::take_ownership); // } /*****************************************************************************/ /* Python bindings for triton::ir */ /*****************************************************************************/ void init_triton_ir(py::module &&m) { using ret = py::return_value_policy; using namespace pybind11::literals; py::enum_(m, "CACHE_MODIFIER") .value("NONE", mlir::triton::CacheModifier::NONE) .value("CA", mlir::triton::CacheModifier::CA) .value("CG", mlir::triton::CacheModifier::CG) .export_values(); py::enum_(m, "EVICTION_POLICY") .value("NORMAL", mlir::triton::EvictionPolicy::NORMAL) .value("EVICT_FIRST", mlir::triton::EvictionPolicy::EVICT_FIRST) .value("EVICT_LAST", mlir::triton::EvictionPolicy::EVICT_LAST) .export_values(); py::enum_(m, "REDUCE_OP") .value("ADD", mlir::triton::RedOp::ADD) .value("FADD", mlir::triton::RedOp::FADD) .value("MIN", mlir::triton::RedOp::MIN) .value("MAX", mlir::triton::RedOp::MAX) .value("FMIN", mlir::triton::RedOp::FMIN) .value("FMAX", mlir::triton::RedOp::FMAX) .value("XOR", mlir::triton::RedOp::XOR); py::enum_(m, "ATOMIC_OP") .value("ADD", mlir::triton::RMWOp::ADD) .value("FADD", mlir::triton::RMWOp::FADD) .value("AND", mlir::triton::RMWOp::AND) .value("OR", mlir::triton::RMWOp::OR) .value("XOR", mlir::triton::RMWOp::XOR) // .value("XCHG", mlir::triton::RMWOp::Xchg) .value("MAX", mlir::triton::RMWOp::MAX) .value("MIN", mlir::triton::RMWOp::MIN) .value("UMIN", mlir::triton::RMWOp::UMIN) .value("UMAX", mlir::triton::RMWOp::UMAX); py::class_(m, "context") .def(py::init<>()) .def("load_triton", [](mlir::MLIRContext &self) { self.getOrLoadDialect(); }); // .def(py::init([](){ // mlir::MLIRContext context; // context.getOrLoadDialect(); // // TODO: should we return a (raw/unique) pointer here? // return context; // })); // py::class_(m, "value") // .def("multiple_of", [](ir::value *self, int val) { // if (auto *instr = dynamic_cast(self)) { // instr->set_metadata(ir::metadata::multiple_of, val); // } else // throw std::runtime_error("multiple_of"); // }) // .def("max_contiguous", [](ir::value *self, int val) { // if (auto *instr = dynamic_cast(self)) { // instr->set_metadata(ir::metadata::max_contiguous, val); // } else // throw std::runtime_error("max_contiguous"); // }) // .def("set_fdiv_ieee_rounding", [](ir::value *self, bool val) { // if (auto *instr = dynamic_cast(self)) // instr->set_fdiv_ieee_rounding(val); // else // throw std::runtime_error("set_fdiv_ieee_rounding"); // }) // .def("ops", [](ir::value *self) { // if (auto *instr = dynamic_cast(self)) { // return instr->ops(); // } // throw std::runtime_error("cannot use ops()"); // }) // .def("replace_all_uses_with", &ir::value::replace_all_uses_with) // .def("erase_from_parent", [](ir::value *self) { // if (auto *instr = dynamic_cast(self)) // return instr->erase_from_parent(); // throw std::runtime_error("cannot use erase_from_parent"); // }) // .def_property("name", &ir::value::get_name, &ir::value::set_name) // .def_property_readonly("type", &ir::value::get_type); // // // Do we need under in TritonIR ? // // py::class_(m, "undef") // // .def("get", &ir::undef_value::get, ret::reference); py::class_(m, "type") .def("is_integer", &mlir::Type::isInteger) .def("is_fp16", &mlir::Type::isF16); py::class_(m, "value") .def("set_attr", [](mlir::Value &self, std::string &name, mlir::Attribute &attr) -> void { if (mlir::Operation *definingOp = self.getDefiningOp()) definingOp->setAttr(name, attr); else { /* issue an warning */ } }); py::class_(m, "block_arguement"); py::class_(m, "region") .def("get_parent_region", &mlir::Region::getParentRegion, ret::reference) .def("size", [](mlir::Region &self) { return self.getBlocks().size(); }) .def("empty", &mlir::Region::empty); py::class_(m, "block") .def("arg", [](mlir::Block &self, int index) -> mlir::BlockArgument { return self.getArgument(index); }) .def("get_num_arguments", &mlir::Block::getNumArguments) .def("dump", &mlir::Block::dump) .def("move_before", &mlir::Block::moveBefore) .def("insert_before", &mlir::Block::insertBefore) .def("get_parent", &mlir::Block::getParent, ret::reference) .def("merge_block_before", [](mlir::Block &self, mlir::Block &dst) { // ref: RewriterBase::mergeBlocks() if (self.getNumArguments() != 0) throw std::runtime_error( "This block has arguments, don't merge"); dst.getOperations().splice(dst.end(), self.getOperations()); self.dropAllUses(); self.erase(); }) .def("replace_use_in_block_with", [](mlir::Block &self, mlir::Value &v, mlir::Value &newVal) { v.replaceUsesWithIf(newVal, [&](mlir::OpOperand &operand) { mlir::Operation *user = operand.getOwner(); mlir::Block *currentBlock = user->getBlock(); while (currentBlock) { if (currentBlock == &self) return true; // Move up one level currentBlock = currentBlock->getParent()->getParentOp()->getBlock(); } return false; }); }); // using eattr = ir::attribute_kind_t; // py::enum_(m, "attribute_kind") // .value("readonly", eattr::readonly) // .value("writeonly", eattr::writeonly) // .value("noalias", eattr::noalias) // .value("aligned", eattr::aligned) // .value("multiple_of", eattr::multiple_of) // .value("retune", eattr::retune) // .value("not_implemented", eattr::not_implemented); py::class_(m, "attribute"); py::class_(m, "integer_attr"); py::class_(m, "bool_attr"); // Ops py::class_(m, "OpState") .def("set_attr", [](mlir::OpState &self, std::string &name, mlir::Attribute &attr) -> void { self->setAttr(name, attr); }) .def( "get_num_results", [](mlir::OpState &self) -> unsigned { return self->getNumResults(); }) .def("get_result", [](mlir::OpState &self, unsigned idx) -> mlir::Value { return self->getResult(idx); }) .def( "get_region", [](mlir::OpState &self, unsigned idx) -> mlir::Region & { return self->getRegion(idx); }, ret::reference) .def( "get_body", [](mlir::scf::ForOp &self, unsigned idx) -> mlir::Block * { return self.getBody(idx); }, ret::reference) .def("dump", [](mlir::OpState &self) { self->dump(); }) .def("str", [](mlir::OpState &self) -> std::string { std::string str; llvm::raw_string_ostream os(str); self->print(os); return str; }) .def("append_operand", [](mlir::OpState &self, mlir::Value &val) { self->insertOperands(self->getNumOperands(), val); }) .def("verify", [](mlir::OpState &self) -> bool { return mlir::succeeded(mlir::verify(self.getOperation())); }); // scf Ops py::class_(m, "ForOp"); py::class_(m, "IfOp") .def("get_then_block", &mlir::scf::IfOp::thenBlock, ret::reference) .def("get_else_block", &mlir::scf::IfOp::elseBlock, ret::reference) .def("get_then_yield", &mlir::scf::IfOp::thenYield) .def("get_else_yield", &mlir::scf::IfOp::elseYield); py::class_(m, "YieldOp"); py::class_(m, "WhileOp") .def("get_before", &mlir::scf::WhileOp::getBefore, ret::reference) .def("get_after", &mlir::scf::WhileOp::getAfter, ret::reference); py::class_(m, "CondtionOp"); // dynamic_attr is used to transfer ownership of the MLIR context to the // module py::class_(m, "module", py::dynamic_attr()) .def("dump", &mlir::ModuleOp::dump) .def("str", [](mlir::ModuleOp &self) -> std::string { std::string str; llvm::raw_string_ostream os(str); self.print(os); return str; }) .def("push_back", [](mlir::ModuleOp &self, mlir::FuncOp &funcOp) -> void { self.push_back(funcOp); }) .def("has_function", [](mlir::ModuleOp &self, std::string &funcName) -> bool { if (self.lookupSymbol(funcName)) return true; return false; }) .def("get_function", [](mlir::ModuleOp &self, std::string &funcName) -> mlir::FuncOp { return self.lookupSymbol(funcName); }); py::class_(m, "function") // .def_property_readonly("attrs", &ir::function::attrs) // .def("add_attr", &ir::function::add_attr); .def("args", [](mlir::FuncOp &self, unsigned idx) -> mlir::BlockArgument { return self.getArgument(idx); }) .def( "add_entry_block", [](mlir::FuncOp &self) -> mlir::Block * { return self.addEntryBlock(); }, ret::reference) .def( "set_arg_attr", [](mlir::FuncOp &self, int arg_no, const std::string &name, int val) { // set arg attributes "name" to value "val" auto attrTy = mlir::IntegerType::get(self.getContext(), 32); self.setArgAttr(arg_no, name, mlir::IntegerAttr::get(attrTy, val)); }, ret::reference) .def("reset_type", &mlir::FuncOp::setType); py::class_(m, "InsertPoint"); py::class_(m, "builder", py::dynamic_attr()) .def(py::init()) // // getters .def_property_readonly("context", &mlir::OpBuilder::getContext, ret::reference) .def("create_module", [](mlir::OpBuilder &self) -> mlir::ModuleOp { auto loc = self.getUnknownLoc(); return self.create(loc); }) .def("ret", [](mlir::OpBuilder &self, std::vector &vals) -> void { auto loc = self.getUnknownLoc(); self.create(loc, vals); }) .def("call", [](mlir::OpBuilder &self, mlir::FuncOp &func, std::vector &args) -> mlir::OpState { auto loc = self.getUnknownLoc(); return self.create(loc, func, args); }) // insertion block/point .def("set_insertion_point_to_start", [](mlir::OpBuilder &self, mlir::Block &block) -> void { self.setInsertionPointToStart(&block); }) .def("set_insertion_point_to_end", [](mlir::OpBuilder &self, mlir::Block &block) { self.setInsertionPointToEnd(&block); }) .def( "get_insertion_block", [](mlir::OpBuilder &self) -> mlir::Block * { return self.getInsertionBlock(); }, ret::reference) .def("get_insertion_point", &mlir::OpBuilder::saveInsertionPoint) .def("restore_insertion_point", &mlir::OpBuilder::restoreInsertionPoint) // .def("set_insert_point", [](ir::builder *self, // std::pair pt) { // ir::basic_block *bb = pt.first; // ir::instruction *instr = pt.second; // if (instr) { // if (bb != instr->get_parent()) // throw std::runtime_error("invalid insertion point, instr not in // bb"); // self->set_insert_point(instr); // } else { // assert(bb); // self->set_insert_point(bb); // } // }) // Attr .def("get_bool_attr", &mlir::OpBuilder::getBoolAttr) .def("get_int32_attr", &mlir::OpBuilder::getI32IntegerAttr) // Use arith.ConstantOp to create constants // // Constants // .def("get_int1", &ir::builder::get_int1, ret::reference) .def("get_int32", [](mlir::OpBuilder &self, int64_t v) -> mlir::Value { auto loc = self.getUnknownLoc(); return mlir::Value(self.create( loc, v, self.getI32Type())); }) // .def("get_uint32", &ir::builder::get_int32, ret::reference) // .def("get_int64", [](ir::builder *self, int64_t v) { return // self->get_int64((uint64_t)v); }, ret::reference) .def("get_uint64", // &ir::builder::get_int64, ret::reference) .def("get_float16", // &ir::builder::get_float16, ret::reference) .def("get_float32", [](mlir::OpBuilder &self, float v) -> mlir::Value { auto loc = self.getUnknownLoc(); return self.create( loc, self.getF32FloatAttr(v)); }) .def("get_null_value", [](mlir::OpBuilder &self, mlir::Type &type) -> mlir::Value { auto loc = self.getUnknownLoc(); if (type.isa()) return self.create( loc, self.getF32FloatAttr(0.0)); else throw std::runtime_error("Not implemented"); }) // Types .def("get_void_ty", [](mlir::OpBuilder &self) -> mlir::Type { return self.getNoneType(); }) .def("get_int1_ty", [](mlir::OpBuilder &self) -> mlir::Type { return self.getI1Type(); }) // or ret::copy? .def("get_int8_ty", [](mlir::OpBuilder &self) -> mlir::Type { return self.getI8Type(); }) .def("get_int16_ty", [](mlir::OpBuilder &self) -> mlir::Type { return self.getType(16); }) .def( "get_int32_ty", [](mlir::OpBuilder &self) -> mlir::Type { return self.getI32Type(); }) .def( "get_int64_ty", [](mlir::OpBuilder &self) -> mlir::Type { return self.getI64Type(); }) .def("get_fp8_ty", [](mlir::OpBuilder &self) -> mlir::Type { return self.getType(); }) .def("get_bf8_ty", [](mlir::OpBuilder &self) -> mlir::Type { return self.getType(); }) .def( "get_half_ty", [](mlir::OpBuilder &self) -> mlir::Type { return self.getF16Type(); }) .def("get_bf16_ty", [](mlir::OpBuilder &self) -> mlir::Type { return self.getBF16Type(); }) .def( "get_float_ty", [](mlir::OpBuilder &self) -> mlir::Type { return self.getF32Type(); }) .def( "get_double_ty", [](mlir::OpBuilder &self) -> mlir::Type { return self.getF64Type(); }) .def("get_ptr_ty", [](mlir::OpBuilder &self, mlir::Type &type, int addrSpace) -> mlir::Type { return mlir::triton::PointerType::get(type, addrSpace); }) .def("get_block_ty", [](mlir::OpBuilder &self, mlir::Type &elementType, std::vector &shape) -> mlir::Type { return mlir::RankedTensorType::get(shape, elementType); }) .def("get_function_ty", [](mlir::OpBuilder &self, std::vector inTypes, std::vector outTypes) -> mlir::Type { return self.getFunctionType(inTypes, outTypes); }) // Ops .def("create_function", [](mlir::OpBuilder &self, std::string name, mlir::Type &funcType) -> mlir::FuncOp { // TODO: loc auto loc = self.getUnknownLoc(); if (auto funcTy = funcType.dyn_cast()) { return self.create(loc, name, funcTy); } throw std::runtime_error("invalid function type"); }) .def("get_or_insert_function", [](mlir::OpBuilder &self, mlir::ModuleOp &module, std::string &funcName, mlir::Type &funcType) -> mlir::FuncOp { if (mlir::Operation *funcOperation = module.lookupSymbol(funcName)) return llvm::dyn_cast(funcOperation); auto loc = self.getUnknownLoc(); if (auto funcTy = funcType.dyn_cast()) { return self.create(loc, funcName, funcTy); } throw std::runtime_error("invalid function type"); }) .def( "create_block", [](mlir::OpBuilder &self) -> mlir::Block * { mlir::Region *parent = self.getBlock()->getParent(); return self.createBlock(parent); }, ret::reference) .def( "create_block_with_parent", [](mlir::OpBuilder &self, mlir::Region &parent, std::vector &argTypes) -> mlir::Block * { auto argLoc = self.getUnknownLoc(); llvm::SmallVector argLocs(argTypes.size(), argLoc); return self.createBlock(&parent, {}, argTypes, argLocs); }, ret::reference) .def( "new_block", [](mlir::OpBuilder &self) -> mlir::Block * { return new mlir::Block(); }, ret::reference) // Structured control flow .def("create_for_op", [](mlir::OpBuilder &self, mlir::Value &lb, mlir::Value &ub, mlir::Value &step, std::vector &initArgs) -> mlir::scf::ForOp { auto loc = self.getUnknownLoc(); return self.create(loc, lb, ub, step, initArgs); }) .def("create_if_op", [](mlir::OpBuilder &self, std::vector &retTypes, mlir::Value &condition, bool withElse) -> mlir::scf::IfOp { auto loc = self.getUnknownLoc(); return self.create(loc, retTypes, condition, withElse); }) .def("create_yield_op", [](mlir::OpBuilder &self, std::vector &yields) -> mlir::scf::YieldOp { auto loc = self.getUnknownLoc(); return self.create(loc, yields); }) .def("create_while_op", [](mlir::OpBuilder &self, std::vector &retTypes, std::vector &initArgs) -> mlir::scf::WhileOp { auto loc = self.getUnknownLoc(); return self.create(loc, retTypes, initArgs); }) .def("create_condtion_op", [](mlir::OpBuilder &self, mlir::Value &cond, std::vector &args) -> mlir::scf::ConditionOp { auto loc = self.getUnknownLoc(); return self.create(loc, cond, args); }) // miscellious .def("create_make_range", [](mlir::OpBuilder &self, int start, int end) -> mlir::Value { auto loc = self.getUnknownLoc(); auto retType = mlir::RankedTensorType::get({end - start}, self.getI32Type()); return self.create(loc, retType, start, end); }) .def("create_get_program_id", [](mlir::OpBuilder &self, int axis) -> mlir::Value { auto loc = self.getUnknownLoc(); return self.create( loc, self.getI32Type(), axis); }) // Cast instructions .def("create_bitcast", [](mlir::OpBuilder &self, mlir::Value &src, mlir::Type &dstType) -> mlir::Value { auto loc = self.getUnknownLoc(); return self.create(loc, dstType, src); }) // .def("create_cast", &ir::builder::create_cast) // .def("create_ptr_to_int", &ir::builder::create_ptr_to_int) .def("create_si_to_fp", [](mlir::OpBuilder &self, mlir::Value &src, mlir::Type &dstType) -> mlir::Value { auto loc = self.getUnknownLoc(); return self.create(loc, dstType, src); }) .def("create_ui_to_fp", [](mlir::OpBuilder &self, mlir::Value &src, mlir::Type &dstType) -> mlir::Value { auto loc = self.getUnknownLoc(); return self.create(loc, dstType, src); }) .def("create_fp_to_si", [](mlir::OpBuilder &self, mlir::Value &src, mlir::Type &dstType) -> mlir::Value { auto loc = self.getUnknownLoc(); return self.create(loc, dstType, src); }) .def("create_fp_to_ui", [](mlir::OpBuilder &self, mlir::Value &src, mlir::Type &dstType) -> mlir::Value { auto loc = self.getUnknownLoc(); return self.create(loc, dstType, src); }) .def("create_fp_ext", [](mlir::OpBuilder &self, mlir::Value &src, mlir::Type &dstType) -> mlir::Value { auto loc = self.getUnknownLoc(); return self.create(loc, dstType, src); }) .def("create_fp_trunc", [](mlir::OpBuilder &self, mlir::Value &src, mlir::Type &dstType) -> mlir::Value { auto loc = self.getUnknownLoc(); return self.create(loc, dstType, src); }) // .def("create_int_cast", &ir::builder::create_int_cast) // .def("create_downcast", &ir::builder::create_downcast) .def("create_to_index", [](mlir::OpBuilder &self, mlir::Value &input) -> mlir::Value { auto loc = self.getUnknownLoc(); return self.create(loc, input, self.getIndexType()); }) .def("create_fmul", [](mlir::OpBuilder &self, mlir::Value &lhs, mlir::Value &rhs) -> mlir::Value { auto loc = self.getUnknownLoc(); return self.create(loc, lhs, rhs); }) .def("create_fdiv", [](mlir::OpBuilder &self, mlir::Value &lhs, mlir::Value &rhs) -> mlir::Value { auto loc = self.getUnknownLoc(); return self.create(loc, lhs, rhs); }) .def("create_frem", [](mlir::OpBuilder &self, mlir::Value &lhs, mlir::Value &rhs) -> mlir::Value { auto loc = self.getUnknownLoc(); return self.create(loc, lhs, rhs); }) .def("create_fadd", [](mlir::OpBuilder &self, mlir::Value &lhs, mlir::Value &rhs) -> mlir::Value { auto loc = self.getUnknownLoc(); return self.create(loc, lhs, rhs); }) .def("create_fsub", [](mlir::OpBuilder &self, mlir::Value &lhs, mlir::Value &rhs) -> mlir::Value { auto loc = self.getUnknownLoc(); return self.create(loc, lhs, rhs); }) .def("create_mul", [](mlir::OpBuilder &self, mlir::Value &lhs, mlir::Value &rhs) -> mlir::Value { auto loc = self.getUnknownLoc(); return self.create(loc, lhs, rhs); }) .def("create_sdiv", [](mlir::OpBuilder &self, mlir::Value &lhs, mlir::Value &rhs) -> mlir::Value { auto loc = self.getUnknownLoc(); return self.create(loc, lhs, rhs); }) .def("create_udiv", [](mlir::OpBuilder &self, mlir::Value &lhs, mlir::Value &rhs) -> mlir::Value { auto loc = self.getUnknownLoc(); return self.create(loc, lhs, rhs); }) .def("create_srem", [](mlir::OpBuilder &self, mlir::Value &lhs, mlir::Value &rhs) -> mlir::Value { auto loc = self.getUnknownLoc(); return self.create(loc, lhs, rhs); }) .def("create_urem", [](mlir::OpBuilder &self, mlir::Value &lhs, mlir::Value &rhs) -> mlir::Value { auto loc = self.getUnknownLoc(); return self.create(loc, lhs, rhs); }) .def("create_add", [](mlir::OpBuilder &self, mlir::Value &lhs, mlir::Value &rhs) -> mlir::Value { auto loc = self.getUnknownLoc(); return self.create(loc, lhs, rhs); }) .def("create_sub", [](mlir::OpBuilder &self, mlir::Value &lhs, mlir::Value &rhs) -> mlir::Value { auto loc = self.getUnknownLoc(); return mlir::Value( self.create(loc, lhs, rhs)); }) .def("create_shl", [](mlir::OpBuilder &self, mlir::Value &lhs, mlir::Value &rhs) -> mlir::Value { auto loc = self.getUnknownLoc(); return mlir::Value( self.create(loc, lhs, rhs)); }) .def("create_lshr", [](mlir::OpBuilder &self, mlir::Value &lhs, mlir::Value &rhs) -> mlir::Value { auto loc = self.getUnknownLoc(); return mlir::Value( self.create(loc, lhs, rhs)); }) .def("create_ashr", [](mlir::OpBuilder &self, mlir::Value &lhs, mlir::Value &rhs) -> mlir::Value { auto loc = self.getUnknownLoc(); return mlir::Value( self.create(loc, lhs, rhs)); }) // GEP .def("create_gep", [](mlir::OpBuilder &self, mlir::Value &ptr, mlir::Value &offset) -> mlir::Value { auto loc = self.getUnknownLoc(); return self.create(loc, ptr.getType(), ptr, offset); }) // Comparison (int) .def("create_icmpSLE", [](mlir::OpBuilder &self, mlir::Value &lhs, mlir::Value &rhs) -> mlir::Value { auto loc = self.getUnknownLoc(); return self.create( loc, mlir::arith::CmpIPredicate::sle, lhs, rhs); }) .def("create_icmpSLT", [](mlir::OpBuilder &self, mlir::Value &lhs, mlir::Value &rhs) -> mlir::Value { auto loc = self.getUnknownLoc(); return self.create( loc, mlir::arith::CmpIPredicate::slt, lhs, rhs); }) .def("create_icmpSGE", [](mlir::OpBuilder &self, mlir::Value &lhs, mlir::Value &rhs) -> mlir::Value { auto loc = self.getUnknownLoc(); return self.create( loc, mlir::arith::CmpIPredicate::sge, lhs, rhs); }) .def("create_icmpSGT", [](mlir::OpBuilder &self, mlir::Value &lhs, mlir::Value &rhs) -> mlir::Value { auto loc = self.getUnknownLoc(); return self.create( loc, mlir::arith::CmpIPredicate::sgt, lhs, rhs); }) .def("create_icmpULE", [](mlir::OpBuilder &self, mlir::Value &lhs, mlir::Value &rhs) -> mlir::Value { auto loc = self.getUnknownLoc(); return self.create( loc, mlir::arith::CmpIPredicate::ule, lhs, rhs); }) .def("create_icmpULT", [](mlir::OpBuilder &self, mlir::Value &lhs, mlir::Value &rhs) -> mlir::Value { auto loc = self.getUnknownLoc(); return self.create( loc, mlir::arith::CmpIPredicate::ult, lhs, rhs); }) .def("create_icmpUGE", [](mlir::OpBuilder &self, mlir::Value &lhs, mlir::Value &rhs) -> mlir::Value { auto loc = self.getUnknownLoc(); return self.create( loc, mlir::arith::CmpIPredicate::uge, lhs, rhs); }) .def("create_icmpUGT", [](mlir::OpBuilder &self, mlir::Value &lhs, mlir::Value &rhs) -> mlir::Value { auto loc = self.getUnknownLoc(); return self.create( loc, mlir::arith::CmpIPredicate::ugt, lhs, rhs); }) .def("create_icmpEQ", [](mlir::OpBuilder &self, mlir::Value &lhs, mlir::Value &rhs) -> mlir::Value { auto loc = self.getUnknownLoc(); return self.create( loc, mlir::arith::CmpIPredicate::eq, lhs, rhs); }) .def("create_icmpNE", [](mlir::OpBuilder &self, mlir::Value &lhs, mlir::Value &rhs) -> mlir::Value { auto loc = self.getUnknownLoc(); return self.create( loc, mlir::arith::CmpIPredicate::ne, lhs, rhs); }) // Comparison (float) .def("create_fcmpOLT", [](mlir::OpBuilder &self, mlir::Value &lhs, mlir::Value &rhs) -> mlir::Value { auto loc = self.getUnknownLoc(); return self.create( loc, mlir::arith::CmpFPredicate::OLT, lhs, rhs); }) .def("create_fcmpOGT", [](mlir::OpBuilder &self, mlir::Value &lhs, mlir::Value &rhs) -> mlir::Value { auto loc = self.getUnknownLoc(); return self.create( loc, mlir::arith::CmpFPredicate::OGT, lhs, rhs); }) .def("create_fcmpOLE", [](mlir::OpBuilder &self, mlir::Value &lhs, mlir::Value &rhs) -> mlir::Value { auto loc = self.getUnknownLoc(); return self.create( loc, mlir::arith::CmpFPredicate::OLE, lhs, rhs); }) .def("create_fcmpOGE", [](mlir::OpBuilder &self, mlir::Value &lhs, mlir::Value &rhs) -> mlir::Value { auto loc = self.getUnknownLoc(); return self.create( loc, mlir::arith::CmpFPredicate::OGE, lhs, rhs); }) .def("create_fcmpOEQ", [](mlir::OpBuilder &self, mlir::Value &lhs, mlir::Value &rhs) -> mlir::Value { auto loc = self.getUnknownLoc(); return self.create( loc, mlir::arith::CmpFPredicate::OEQ, lhs, rhs); }) .def("create_fcmpONE", [](mlir::OpBuilder &self, mlir::Value &lhs, mlir::Value &rhs) -> mlir::Value { auto loc = self.getUnknownLoc(); return self.create( loc, mlir::arith::CmpFPredicate::ONE, lhs, rhs); }) .def("create_fcmpULT", [](mlir::OpBuilder &self, mlir::Value &lhs, mlir::Value &rhs) -> mlir::Value { auto loc = self.getUnknownLoc(); return self.create( loc, mlir::arith::CmpFPredicate::ULT, lhs, rhs); }) .def("create_fcmpUGT", [](mlir::OpBuilder &self, mlir::Value &lhs, mlir::Value &rhs) -> mlir::Value { auto loc = self.getUnknownLoc(); return self.create( loc, mlir::arith::CmpFPredicate::UGT, lhs, rhs); }) .def("create_fcmpULE", [](mlir::OpBuilder &self, mlir::Value &lhs, mlir::Value &rhs) -> mlir::Value { auto loc = self.getUnknownLoc(); return self.create( loc, mlir::arith::CmpFPredicate::ULE, lhs, rhs); }) .def("create_fcmpUGE", [](mlir::OpBuilder &self, mlir::Value &lhs, mlir::Value &rhs) -> mlir::Value { auto loc = self.getUnknownLoc(); return self.create( loc, mlir::arith::CmpFPredicate::UGE, lhs, rhs); }) .def("create_fcmpUEQ", [](mlir::OpBuilder &self, mlir::Value &lhs, mlir::Value &rhs) -> mlir::Value { auto loc = self.getUnknownLoc(); return self.create( loc, mlir::arith::CmpFPredicate::UEQ, lhs, rhs); }) .def("create_fcmpUNE", [](mlir::OpBuilder &self, mlir::Value &lhs, mlir::Value &rhs) -> mlir::Value { auto loc = self.getUnknownLoc(); return self.create( loc, mlir::arith::CmpFPredicate::UNE, lhs, rhs); }) // // Logical .def("create_and", [](mlir::OpBuilder &self, mlir::Value &lhs, mlir::Value &rhs) -> mlir::Value { auto loc = self.getUnknownLoc(); return self.create(loc, lhs, rhs); }) .def("create_xor", [](mlir::OpBuilder &self, mlir::Value &lhs, mlir::Value &rhs) -> mlir::Value { auto loc = self.getUnknownLoc(); return self.create(loc, lhs, rhs); }) .def("create_or", [](mlir::OpBuilder &self, mlir::Value &lhs, mlir::Value &rhs) -> mlir::Value { auto loc = self.getUnknownLoc(); return self.create(loc, lhs, rhs); }) // // Input/Output .def("create_load", [](mlir::OpBuilder &self, mlir::Value &ptrs, mlir::triton::CacheModifier cacheModifer, mlir::triton::EvictionPolicy evictionPolicy, bool isVolatile) -> mlir::Value { auto loc = self.getUnknownLoc(); return self.create( loc, ptrs, cacheModifer, evictionPolicy, isVolatile); }) .def("create_store", [](mlir::OpBuilder &self, mlir::Value &ptrs, mlir::Value &value) -> void { auto loc = self.getUnknownLoc(); self.create(loc, ptrs, value); }) .def("create_masked_load", [](mlir::OpBuilder &self, mlir::Value &ptrs, mlir::Value &mask, mlir::Value &other, mlir::triton::CacheModifier cacheModifier, mlir::triton::EvictionPolicy evictionPolicy, bool isVolatile) -> mlir::Value { auto loc = self.getUnknownLoc(); auto ptrType = ptrs.getType().dyn_cast(); std::vector shape = ptrType.getShape(); mlir::Type elementType = ptrType.getElementType() .dyn_cast() .getPointeeType(); return self.create( loc, mlir::RankedTensorType::get(shape, elementType), ptrs, mask, other, cacheModifier, evictionPolicy, isVolatile); }) .def("create_masked_store", [](mlir::OpBuilder &self, mlir::Value &ptrs, mlir::Value &val, mlir::Value &mask) -> void { auto loc = self.getUnknownLoc(); self.create(loc, ptrs, val, mask); }) .def("create_view", [](mlir::OpBuilder &self, mlir::Value &arg, std::vector &shape) -> mlir::Value { auto loc = self.getUnknownLoc(); auto argType = arg.getType() .dyn_cast() .getElementType(); return self.create( loc, mlir::RankedTensorType::get(shape, argType), arg); }) .def( "create_expand_dims", [](mlir::OpBuilder &self, mlir::Value &arg, int axis) -> mlir::Value { auto loc = self.getUnknownLoc(); auto argType = arg.getType().dyn_cast(); auto argEltType = argType.getElementType(); std::vector retShape = argType.getShape(); retShape.insert(retShape.begin() + axis, 1); return self.create( loc, mlir::RankedTensorType::get(retShape, argEltType), arg, axis); }) .def("create_cat", [](mlir::OpBuilder &self, mlir::Value &lhs, mlir::Value &rhs) -> mlir::Value { auto loc = self.getUnknownLoc(); auto lhsType = lhs.getType().dyn_cast(); auto rhsType = rhs.getType().dyn_cast(); if (!(lhsType.getShape().size() == 1 && rhsType.getShape().size() == 1)) throw std::runtime_error( "shape not supported by cat. Expecting rank-1 inputs"); std::vector shape{lhsType.getShape()[0] + rhsType.getShape()[0]}; return self.create( loc, mlir::RankedTensorType::get(shape, lhsType.getElementType()), lhs, rhs); }) .def("create_broadcast", [](mlir::OpBuilder &self, mlir::Value &arg, std::vector &shape) -> mlir::Value { auto loc = self.getUnknownLoc(); if (auto argType = arg.getType().dyn_cast()) return self.createOrFold( loc, mlir::RankedTensorType::get(shape, argType.getElementType()), arg); throw std::runtime_error( "arg is not of RankedTensorType, use create_splat"); }) .def("create_splat", [](mlir::OpBuilder &self, mlir::Value &arg, std::vector &shape) -> mlir::Value { auto loc = self.getUnknownLoc(); auto argType = arg.getType(); auto ret = self.createOrFold( loc, mlir::RankedTensorType::get(shape, argType), arg); return ret; }) // // atomic .def("create_atomic_cas", [](mlir::OpBuilder &self, mlir::Value &ptr, mlir::Value &cmp, mlir::Value &val) -> mlir::Value { auto loc = self.getUnknownLoc(); auto ptrType = ptr.getType().dyn_cast(); mlir::Type dstType = ptrType.getPointeeType(); return self.create(loc, dstType, ptr, cmp, val); }) .def("create_atomic_rmw", [](mlir::OpBuilder &self, mlir::triton::RMWOp rmwOp, mlir::Value &ptr, mlir::Value &val, mlir::Value &mask) -> mlir::Value { auto loc = self.getUnknownLoc(); auto ptrType = ptr.getType().dyn_cast(); mlir::Type dstType = ptrType.getPointeeType(); return self.create(loc, dstType, rmwOp, ptr, val, mask); }) // Built-in instruction .def("create_get_program_id", [](mlir::OpBuilder &self, int axis) -> mlir::Value { auto loc = self.getUnknownLoc(); return self.create( loc, self.getI32Type(), self.getI32IntegerAttr(axis)); }) .def("create_get_num_programs", [](mlir::OpBuilder &self, int axis) -> mlir::Value { auto loc = self.getUnknownLoc(); return self.create( loc, self.getI32Type(), self.getI32IntegerAttr(axis)); }) .def("create_dot", [](mlir::OpBuilder &self, mlir::Value &a, mlir::Value &b, mlir::Value &c, bool allowTF32) -> mlir::Value { auto loc = self.getUnknownLoc(); return self.create(loc, c.getType(), a, b, c, allowTF32); }) // .def("create_exp", &ir::builder::create_exp, ret::reference) // .def("create_cos", &ir::builder::create_cos, ret::reference) // .def("create_sin", &ir::builder::create_sin, ret::reference) // .def("create_log", &ir::builder::create_log, ret::reference) // .def("create_trans", &ir::builder::create_trans, ret::reference) // .def("create_sqrt", &ir::builder::create_sqrt, ret::reference) .def("create_reduce", [](mlir::OpBuilder &self, mlir::Value &operand, mlir::triton::RedOp redOp, int axis) -> mlir::Value { auto loc = self.getUnknownLoc(); auto inputTensorType = operand.getType().dyn_cast(); std::vector shape = inputTensorType.getShape(); shape.erase(shape.begin() + axis); auto resType = mlir::RankedTensorType::get( shape, inputTensorType.getElementType()); return self.create(loc, resType, redOp, operand, axis); }) .def("create_select", [](mlir::OpBuilder &self, mlir::Value &condition, mlir::Value &trueValue, mlir::Value &falseValue) -> mlir::Value { auto loc = self.getUnknownLoc(); return self.create(loc, condition, trueValue, falseValue); }) // // Intrinsics // // These have no place in the IR, and hopefully they can be removed at // some point .def("create_umulhi", &ir::builder::create_umulhi, // ret::reference) .def("create_barrier", &ir::builder::create_barrier, // ret::reference); ; py::class_(m, "pass_manager") .def(py::init()) .def("run", [](mlir::PassManager &self, mlir::ModuleOp &mod) -> bool { return mlir::succeeded(self.run(mod.getOperation())); }) .def( "add_sccp_pass", [](mlir::PassManager &self) { self.addPass(mlir::createSCCPPass()); }) .def("add_symbol_dce_pass", [](mlir::PassManager &self) { self.addPass(mlir::createSymbolDCEPass()); }) .def("add_inliner_pass", [](mlir::PassManager &self) { self.addPass(mlir::createInlinerPass()); }) .def("add_canonicalizer_pass", [](mlir::PassManager &self) { self.addPass(mlir::createCanonicalizerPass()); }) .def("add_cse_pass", [](mlir::PassManager &self) { self.addPass(mlir::createCSEPass()); }) .def("add_triton_combine_pass", [](mlir::PassManager &self) { self.addPass(mlir::triton::createCombineOpsPass()); }) .def("add_convert_triton_to_tritongpu_pass", [](mlir::PassManager &self, int numWarps) { self.addPass( mlir::triton::createConvertTritonToTritonGPUPass(numWarps)); }) .def("add_tritongpu_pipeline_pass", [](mlir::PassManager &self, int numStages) { self.addPass(mlir::createTritonGPUPipelinePass(numStages)); }) .def("add_triton_gpu_combine_pass", [](mlir::PassManager &self) { self.addPass(mlir::createTritonGPUCombineOpsPass()); }) .def("add_triton_gpu_verifier_pass", [](mlir::PassManager &self) { self.addPass(mlir::createTritonGPUVerifier()); }) .def("triton_gpu_to_llvm", [](mlir::PassManager &self) { self.addPass(mlir::triton::createConvertTritonGPUToLLVMPass()); }); } void init_triton(py::module &m) { py::module subm = m.def_submodule("triton"); // init_triton_codegen(std::move(subm.def_submodule("code_gen"))); init_triton_runtime(std::move(subm.def_submodule("runtime"))); init_triton_ir(std::move(subm.def_submodule("ir"))); }