#include #include #include #include "triton/codegen/analysis/axes.h" #include "triton/codegen/analysis/align.h" #include "triton/codegen/analysis/layout.h" #include "triton/ir/function.h" #include "triton/ir/module.h" #include "triton/ir/utils.h" namespace triton{ namespace codegen{ namespace analysis{ /* -------------------------------- * * Helper Functions * * -------------------------------- */ inline unsigned clamp(unsigned x, unsigned a, unsigned b) { unsigned lo = std::min(a, b); unsigned hi = std::max(a, b); return std::min(std::max(x, lo), hi); } inline bool is_hmma_c(ir::value *v){ bool result = false; if(auto *x = dynamic_cast(v)){ ir::value *a = x->get_operand(0); ir::type *a_ty = a->get_type(); ir::value *b = x->get_operand(1); ir::type *b_ty = b->get_type(); result = a_ty->get_scalar_ty()->is_half_ty() && b_ty->get_scalar_ty()->is_half_ty(); } return result; } inline void extract_io_use(ir::value *v, std::set& result) { for(ir::user* u: v->get_users()){ auto i = dynamic_cast(u); if(i && i->get_pointer_operand() == v) result.insert(v); } } inline void extract_dot_use(ir::value *v, ir::value*& result, size_t n) { for(ir::user* u: v->get_users()){ auto i = dynamic_cast(u); if(i && i->get_operand(n) == v) result = v; } } inline void extract_hmma_dot_use(ir::value *v, ir::value*& result, size_t n) { for(ir::user* u: v->get_users()){ auto i = dynamic_cast(u); if(i && is_hmma_c(i) && i->get_operand(n) == v) result = v; } } inline bool is_trans(ir::value *v) { if(dynamic_cast(v)) { return true; } if(auto *phi = dynamic_cast(v)) { bool result = true; for(ir::value *op: phi->ops()) result = result && is_trans(op); return result; } return false; } /* -------------------------------- * * Layout Visitor * * -------------------------------- */ void layout_visitor::visit_layout(data_layout *layout) { layout->accept(this); } /* -------------------------------- * * Base Data Layout * * -------------------------------- */ data_layout::data_layout(id_t id, const std::vector &axes, const std::vector &shape, const std::vector &values, analysis::align* align): id_(id), axes_(axes), shape_(shape), values_(values) { // io pointer std::set ptr; for(ir::value* v: values_) extract_io_use(v, ptr); order_.resize(axes_.size()); std::iota(order_.begin(), order_.end(), 0); auto largest = std::max_element(ptr.begin(), ptr.end(), [&](ir::value *x, ir::value *y){ std::pair xx = {x->get_type()->get_tile_rank(), x->get_type()->get_tile_num_elements()}; std::pair yy = {y->get_type()->get_tile_rank(), y->get_type()->get_tile_num_elements()}; return xx < yy; }); if(*largest){ auto max_contiguous = align->contiguous(*largest); std::sort(order_.begin(), order_.end(), [&](unsigned a, unsigned b) { return max_contiguous[a] > max_contiguous[b]; }); } } size_t data_layout::find_axis(int to_find) const { auto it = std::find(axes_.begin(), axes_.end(), to_find); return std::distance(axes_.begin(), it); } /* -------------------------------- * * MMA Layout * * -------------------------------- */ mma884_layout::mma884_layout(size_t num_warps, const std::vector& axes, const std::vector& shape, const std::vector &values, analysis::align* align): data_layout(HMMA_884, axes, shape, values, align) { /* fragments per warp */ // try to make things as square as possible to maximize data re-use fpw_ = {1, 1, 1}; std::vector fpw_nm1; unsigned num_fragments = std::min((shape_[0]/8)*(shape_[1]/8), 4); do { fpw_nm1 = fpw_; if(fpw_[0]*fpw_[1] < num_fragments) fpw_[0] = clamp(fpw_[0]*2, 1, shape_[0] / 8); if(fpw_[0]*fpw_[1] < num_fragments) fpw_[1] = clamp(fpw_[1]*2, 1, shape_[1] / 8); }while(fpw_nm1 != fpw_); /* warps per tile */ // try to make things as square as possible to maximize data re-use wpt_ = {1, 1, 1}; std::vector wpt_nm1; do{ wpt_nm1 = wpt_; if(wpt_[0] * wpt_[1] * wpt_[2] < num_warps) wpt_[0] = clamp(wpt_[0]*2, 1, shape_[0] / (fpw_[0]*8)); if(wpt_[0] * wpt_[1] * wpt_[2] < num_warps) wpt_[1] = clamp(wpt_[1]*2, 1, shape_[1] / (fpw_[1]*8)); }while(wpt_nm1 != wpt_); /* sanity check */ unsigned effective_num_warps = 1; for(size_t d = 0; d < shape.size(); d++) effective_num_warps *= wpt_[d]; // if(num_warps != effective_num_warps) // throw std::runtime_error("cannot create a kernel with this amount of warps"); } /* -------------------------------- * * Scanline Layout * * -------------------------------- */ scanline_layout::scanline_layout(size_t num_warps, const std::vector& axes, const std::vector& shape, const std::vector &values, analysis::align* align, target *tgt): data_layout(SCANLINE, axes, shape, values, align){ unsigned size = std::accumulate(shape_.begin(), shape_.end(), 1, std::multiplies()); unsigned num_threads = tgt->is_gpu() ? num_warps * 32 : 1; nts_.resize(shape_.size()); mts_.resize(shape_.size()); bool is_dot = std::any_of(values.begin(), values.end(), [&](ir::value* v) { return dynamic_cast(v); }); ir::value *ptr = nullptr; for(ir::value *v: values) for(ir::user *usr: v->get_users()) if(auto *st = dynamic_cast(usr)) ptr = st->get_pointer_operand(); unsigned i = order_[0]; int contiguous = 4; if(ptr) contiguous = std::min(align->contiguous(ptr)[i], 4); nts_[i] = clamp(size / num_threads, 1, std::min(contiguous, shape_[i])); mts_[i] = clamp(num_threads, 1, shape_[i] / nts_[i]); size /= shape_[i]; num_threads /= mts_[i]; if(is_dot) nts_[order_[1]] = clamp(size / num_threads, 1, std::min(4, shape_[order_[1]])); for(size_t d = 1; d < shape_.size(); d++){ i = order_[d]; if(d > 1 || !is_dot) nts_[i] = 1; mts_[i] = clamp(num_threads, 1, shape_[i] / nts_[i]); num_threads = num_threads / mts_[i]; } /* sanity check */ unsigned effective_num_threads = 1; for(size_t d = 0; d < shape_.size(); d++) effective_num_threads *= mts_[d]; // std::cout <get_parent() != terminator->get_parent()) return false; if(auto *br = dynamic_cast(terminator)) return br->get_true_dest() == phi->get_parent() || br->get_false_dest() == phi->get_parent(); else if(dynamic_cast(terminator)) return false; else throw std::runtime_error("unreachable"); } void shared_layout::extract_double_bufferable(ir::value *v, std::shared_ptr& res) { auto* phi = dynamic_cast(v); if(!phi || phi->get_num_incoming() != 2) return; ir::basic_block *block_0 = phi->get_incoming_block(0); ir::basic_block *block_1 = phi->get_incoming_block(1); ir::instruction *terminator_0 = block_0->get_inst_list().back(); ir::instruction *terminator_1 = block_1->get_inst_list().back(); bool is_latch_0 = is_loop_latch(phi, terminator_0); bool is_latch_1 = is_loop_latch(phi, terminator_1); ir::value *value_0 = phi->get_incoming_value(0); ir::value *value_1 = phi->get_incoming_value(1); ir::instruction *i_0 = dynamic_cast(value_0); ir::instruction *i_1 = dynamic_cast(value_1); if(!i_0 || !i_1 || !dynamic_cast(i_0) || !dynamic_cast(i_1) ) return; if(is_latch_1) res.reset(new double_buffer_info_t{value_0, value_1, phi}); if(is_latch_0) res.reset(new double_buffer_info_t{value_1, value_0, phi}); } shared_layout::shared_layout(const data_layout *arg, const std::vector& axes, const std::vector& shape, const std::vector &values, ir::type *ty, analysis::align* align): data_layout(SHARED, axes, shape, values, align), ty_(ty) { size_ = 0; // double-buffering for(ir::value *v: values) extract_double_bufferable(v, double_buffer_); // order std::vector arg_order = arg ? arg->get_order() : std::vector{0}; order_ = arg_order; ir::value* dot_a = nullptr; ir::value* dot_b = nullptr; ir::value* hmma_dot_a = nullptr; ir::value* hmma_dot_b = nullptr; for(ir::value* v: values){ extract_dot_use(v, dot_a, 0); extract_dot_use(v, dot_b, 1); extract_hmma_dot_use(v, hmma_dot_a, 0); extract_hmma_dot_use(v, hmma_dot_b, 1); } // non-mma ordering std::vector col = {0, 1}; std::vector row = {1, 0}; for(size_t s = 2; s < get_rank(); s++){ col.push_back(s); row.push_back(s); } bool is_nonhmma_dot_a = dot_a && !hmma_dot_a; bool is_nonhmma_dot_b = dot_b && !hmma_dot_b; if(is_nonhmma_dot_a) order_ = is_trans(dot_a) ? row : col; else if(is_nonhmma_dot_b) order_ = is_trans(dot_b) ? col : row; // padding size_t pad = 0; if(hmma_dot_a){ bool row = is_trans(hmma_dot_a) ^ order_[0] != 0; pad = 24 - shape_[row ? 0 : 1] % 32; } else if(hmma_dot_b){ bool row = is_trans(hmma_dot_b) ^ order_[0] != 0; pad = 24 - shape_[row ? 1 : 0] % 32; } else if(order_ != arg_order) { pad = 4; } shape_[order_[0]] += pad; // size size_ = ty_->get_primitive_size_in_bits() / 8; for(auto s: shape_) size_ *= s; if(double_buffer_) size_ *= 2; } /* -------------------------------- * * ---- Layouts Inference Pass ---- * * -------------------------------- */ layouts::layouts(analysis::axes *axes, analysis::align *align, size_t num_warps, target* tgt) : axes_(axes), align_(align), num_warps_(num_warps), tgt_(tgt){ } void layouts::connect(ir::value *x, ir::value *y) { if(x == y) return; if(!x->get_type()->is_tile_ty()) return; if(!y->get_type()->is_tile_ty()) return; std::vector x_axes = axes_->get(x); std::vector y_axes = axes_->get(y); std::set sx_axes(x_axes.begin(), x_axes.end()); std::set sy_axes(y_axes.begin(), y_axes.end()); std::set common; std::set_intersection(sx_axes.begin(), sx_axes.end(), sy_axes.begin(), sy_axes.end(), std::inserter(common, common.begin())); graph_.add_edge(x, x); graph_.add_edge(y, y); if(!common.empty()) graph_.add_edge(x, y); } void layouts::make_graph(ir::instruction *i) { for(ir::value* opx: i->ops()) for(ir::value* opy: i->ops()){ connect(i, opx); connect(opx, opy); } } void layouts::create(size_t id, const std::vector& values) { auto it_hmma_c = std::find_if(values.begin(), values.end(), &is_hmma_c); auto cmp = [](ir::value* x, ir::value *y) { std::pair xx = {x->get_type()->get_tile_rank(), x->get_type()->get_tile_num_elements()}; std::pair yy = {y->get_type()->get_tile_rank(), y->get_type()->get_tile_num_elements()}; return xx < yy; }; std::vector lvalue = values; std::remove_if(lvalue.begin(), lvalue.end(), [&](ir::value* v) { return dynamic_cast(v); }); ir::value *largest = *std::max_element(lvalue.begin(), lvalue.end(), cmp); const auto& axes = axes_->get(largest); const auto& shapes = largest->get_type()->get_tile_shapes(); auto it_cts = std::find_if(values.begin(), values.end(), [](ir::value* v) { return dynamic_cast(v); }); // type if(it_hmma_c != values.end()) layouts_[id] = new mma884_layout(num_warps_, axes, shapes, values, align_); else if(it_cts != values.end()){ ir::copy_to_shared_inst *cts = (ir::copy_to_shared_inst*)*it_cts; ir::value *arg = cts->get_operand(0); create(groups_.at(arg), values_.at(groups_.at(arg))); layouts_[id] = new shared_layout(get(arg), axes, shapes, values, largest->get_type()->get_scalar_ty(), align_); } else layouts_[id] = new scanline_layout(num_warps_, axes, shapes, values, align_, tgt_); } void layouts::run(ir::module &mod) { // make graph graph_.clear(); ir::for_each_instruction(mod, [this](ir::instruction* i) { make_graph(i); }); // connected components graph_.connected_components(&values_, &groups_); // create layouts for(const auto& x: values_) create(x.first, x.second); // create temporaries size_t id = values_.size(); ir::for_each_instruction(mod, [this, &id](ir::instruction* i) { if(auto *red = dynamic_cast(i)) { id++; ir::value *arg = red->get_operand(0); unsigned axis = red->get_axis(); // shape auto shapes = arg->get_type()->get_tile_shapes(); scanline_layout *layout = get(arg)->to_scanline(); shapes[axis] = layout->mts(axis); // create layout layouts_[id] = new shared_layout(layout, axes_->get(arg), shapes, {red}, red->get_type()->get_scalar_ty(), align_); tmp_[red] = id; } if(auto *recoalasce = dynamic_cast(i)){ ir::value *val = recoalasce->get_operand(0); mma884_layout* in_layout = get(val)->to_mma884(); scanline_layout* out_layout = get(i)->to_scanline(); if(!in_layout || !out_layout) return; id++; ir::type::tile_shapes_t in_shape = val->get_type()->get_tile_shapes(); ir::type::tile_shapes_t shape(in_shape.size()); size_t ld = out_layout->get_order(0); shape[ld] = in_shape[ld]; for(size_t k = 0; k < in_shape.size(); k++) if(k != ld) shape[k] = 4*in_layout->to_mma884()->fpw(k)*in_layout->to_mma884()->wpt(k); // create layout layouts_[id] = new shared_layout(out_layout, axes_->get(val), shape, {recoalasce}, val->get_type()->get_scalar_ty(), align_); tmp_[recoalasce] = id; } if(auto *atom = dynamic_cast(i)){ id++; layouts_[id] = new shared_layout(nullptr, {}, {1}, {atom}, atom->get_type()->get_scalar_ty(), align_); tmp_[atom] = id; } }); } } } }