Matrix Multiplication

In this tutorial, you will write a 25-lines high-performance FP16 matrix multiplication kernel that achieves performance on par with cuBLAS. You will specifically learn about:

  • Block-level matrix multiplications

  • Multi-dimensional pointer arithmetic

  • Program re-ordering for improved L2 cache hit rate

  • Automatic performance tuning

Motivations

Matrix multiplications are a key building block of most modern high-performance computing systems. They are notoriously hard to optimize, hence their implementation is generally done by hardware vendors themselves as part of so-called “kernel libraries” (e.g., cuBLAS). Unfortunately, these libraries are often proprietary and cannot be easily customized to accomodate the needs of modern deep learning workloads (e.g., fused activation functions). In this tutorial, you will learn how to implement efficient matrix multiplications by yourself with Triton, in a way that is easy to customize and extend.

Roughly speaking, the kernel that we will write will implement the following blocked algorithm:

# do in parallel
for m in range(0, M, BLOCK_M):
  # do in parallel
  for n in range(0, N, BLOCK_N):
    acc = zeros((BLOCK_M, BLOCK_N), dtype=float32)
    for k in range(0, K, BLOCK_K):
      a = A[m : m+BLOCK_M, k : k+BLOCK_K]
      b = B[k : k+BLOCK_K, n : n+BLOCK_N]
      acc += dot(a, b)
    C[m : m+BLOCK_M, n : n+BLOCK_N] = acc;

where each iteration of the doubly-nested for-loop corresponds to a Triton program instance.

Compute Kernel

The above algorithm is, actually, fairly straightforward to implement in Triton. The main difficulty comes from the computation of the memory locations at which blocks of A and B must be read in the inner loop. For that, we need multi-dimensional pointer arithmetics.

Pointer Arithmetics

For a row-major 2D tensor X, the memory location of X[i, j] is given by &X[i, j] = X + i*stride_x_0 + j*stride_x_1. Therefore, blocks of pointers for A[m : m+BLOCK_M, k:k+BLOCK_K] and B[k : k+BLOCK_K, n : n+BLOCK_N] can be defined in pseudo-code as:

&A[m : m+BLOCK_M, k:k+BLOCK_K] =  A + (m : m+BLOCK_M)[:, None]*A.stride(0) + (k : k+BLOCK_K)[None, :]*A.stride(1);
&B[k : k+BLOCK_K, n:n+BLOCK_N] =  B + (k : k+BLOCK_K)[:, None]*B.stride(0) + (n : n+BLOCK_N)[None, :]*B.stride(1);

Which means that pointers for blocks of A and B can be initialized (i.e., k=0) in Triton as:

pid_m = triton.program_id(0)
pid_n = triton.program_id(1)
rm = pid_m * BLOCK_M + triton.arange(0, BLOCK_M)
rn = pid_n * BLOCK_N + triton.arange(0, BLOCK_N)
rk = triton.arange(0, BLOCK_K)
// pointer for A operand
pa = A + (rm[:, None] * stride_a_0 + rk[None, :] * stride_a_1);
// pointer for B operand
pb = B + (rk[:, None] * stride_b_0 + rn[None, :] * stride_b_1);

And then updated in the inner loop as follows:

pa += BLOCK_K * stride_a_1;
pb += BLOCK_K * stride_b_0;

L2 Cache Optimizations

As mentioned above, each program instance computes an [BLOCK_M, BLOCK_N] block of C. It is important to remember that the order in which these blocks are computed does matter, since it affects the L2 cache hit rate of our program. And unfortunately, a simple row-major ordering

pid = triton.program_id(0);
grid_m = (M + BLOCK_M - 1) // BLOCK_M;
grid_n = (N + BLOCK_N - 1) // BLOCK_N;
pid_m = pid / grid_n;
pid_n = pid % grid_n;

is just not going to cut it.

One possible solution is to launch blocks in an order that promotes data reuse. This can be done by ‘super-grouping’ blocks in groups of GROUP_M rows before switching to the next column:

pid = triton.program_id(0);
width = GROUP_M * grid_n;
group_id = pid // width;
# we need to handle the case where M % (GROUP_M*BLOCK_M) != 0
group_size = min(grid_m - group_id * GROUP_M, GROUP_M);
pid_m = group_id * GROUP_M + (pid % group_size);
pid_n = (pid % width) // (group_size);

In practice, this can improve the performance of our matrix multiplication kernel by >10% on some hardware architecture (e.g., 220 to 245 TFLOPS on A100).

Final Result

import torch
import triton
import triton.language as tl

# %
# :code:`triton.jit`'ed functions can be auto-tuned by using the `triton.autotune` decorator, which consumes:
#   - A list of :code:`triton.Config` objects that define different configurations of meta-parameters (e.g., BLOCK_M) and compilation options (e.g., num_warps) to try
#   - A autotuning *key* whose change in values will trigger evaluation of all the provided configs

@triton.autotune(
    configs=[
        triton.Config({'BLOCK_M': 128, 'BLOCK_N': 256, 'BLOCK_K': 32, 'GROUP_M': 8}, num_stages=3, num_warps=8),
        triton.Config({'BLOCK_M': 256, 'BLOCK_N': 128, 'BLOCK_K': 32, 'GROUP_M': 8}, num_stages=3, num_warps=8),
        triton.Config({'BLOCK_M': 256, 'BLOCK_N': 64,  'BLOCK_K': 32, 'GROUP_M': 8}, num_stages=4, num_warps=4),
        triton.Config({'BLOCK_M': 64 , 'BLOCK_N': 256, 'BLOCK_K': 32, 'GROUP_M': 8}, num_stages=4, num_warps=4),\
        triton.Config({'BLOCK_M': 128, 'BLOCK_N': 128, 'BLOCK_K': 32, 'GROUP_M': 8}, num_stages=4, num_warps=4),\
        triton.Config({'BLOCK_M': 128, 'BLOCK_N': 64 , 'BLOCK_K': 32, 'GROUP_M': 8}, num_stages=4, num_warps=4),\
        triton.Config({'BLOCK_M': 64 , 'BLOCK_N': 128, 'BLOCK_K': 32, 'GROUP_M': 8}, num_stages=4, num_warps=4),
        triton.Config({'BLOCK_M': 128, 'BLOCK_N': 32 , 'BLOCK_K': 32, 'GROUP_M': 8}, num_stages=4, num_warps=4),\
        triton.Config({'BLOCK_M': 64 , 'BLOCK_N': 32 , 'BLOCK_K': 32, 'GROUP_M': 8}, num_stages=5, num_warps=2),\
        triton.Config({'BLOCK_M': 32 , 'BLOCK_N': 64 , 'BLOCK_K': 32, 'GROUP_M': 8}, num_stages=5, num_warps=2),
        #triton.Config({'BLOCK_M': 64, 'BLOCK_N': 128, 'BLOCK_K': 32, 'GROUP_M': 8}, num_warps=4),
    ],
    key=['M', 'N', 'K'],
)
# %
# We can now define our kernel as normal, using all the techniques presented above
@triton.jit
def _matmul(A, B, C, M, N, K, stride_am, stride_ak, stride_bk, stride_bn, stride_cm, stride_cn, **META):
    # extract meta-parameters
    BLOCK_M = META['BLOCK_M']
    BLOCK_N = META['BLOCK_N']
    BLOCK_K = META['BLOCK_K']
    GROUP_M = 8
    # matrix multiplication
    pid = tl.program_id(0)
    grid_m = (M + BLOCK_M - 1) // BLOCK_M
    grid_n = (N + BLOCK_N - 1) // BLOCK_N
    # re-order program ID for better L2 performance
    width = GROUP_M * grid_n
    group_id = pid // width
    group_size = min(grid_m - group_id * GROUP_M, GROUP_M)
    pid_m = group_id * GROUP_M + (pid % group_size)
    pid_n = (pid % width) // (group_size)
    # do matrix multiplication
    rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M)
    rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N)
    rk = tl.arange(0, BLOCK_K)
    A = A + (rm[:, None] * stride_am + rk[None, :] * stride_ak)
    B = B + (rk[:, None] * stride_bk + rn[None, :] * stride_bn)
    acc = tl.zeros((BLOCK_M, BLOCK_N), dtype=tl.float32)
    for k in range(K, 0, -BLOCK_K):
        a = tl.load(A)
        b = tl.load(B)
        acc += tl.dot(a, b)
        A += BLOCK_K * stride_ak
        B += BLOCK_K * stride_bk
    # triton can accept arbitrary activation function
    # via metaparameters!
    if META['ACTIVATION']:
        acc = META['ACTIVATION'](acc)
    # rematerialize rm and rn to save registers
    rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M)
    rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N)
    C = C + (rm[:, None] * stride_cm + rn[None, :] * stride_cn)
    mask = (rm[:, None] < M) & (rn[None, :] < N)
    tl.store(C, acc, mask=mask)


# we can fuse `leaky_relu` by providing it as an `ACTIVATION` meta-parameter in `_matmul`
@triton.jit
def leaky_relu(x):
    return tl.where(x >= 0, x, 0.01*x)

We can now create a convenience wrapper function that only takes two input tensors and (1) checks any shape constraint; (2) allocates the output; (3) launches the above kernel

def matmul(a, b, activation=None):
    # checks constraints
    assert a.shape[1] == b.shape[0], "incompatible dimensions"
    assert a.is_contiguous(), "matrix A must be contiguous"
    assert b.is_contiguous(), "matrix B must be contiguous"
    M, K = a.shape
    _, N = b.shape
    # allocates output
    c = torch.empty((M, N), device=a.device, dtype=a.dtype)
    # launch kernel
    grid = lambda META: (triton.cdiv(M, META['BLOCK_M']) * triton.cdiv(N, META['BLOCK_N']), )
    pgm = _matmul[grid](
        a, b, c, M, N, K, \
        a.stride(0), a.stride(1), b.stride(0), b.stride(1), c.stride(0), c.stride(1),\
        ACTIVATION = activation
    )
    # done; return the output tensor
    return c

Unit Test

We can test our custom matrix multiplication operation against a native torch implementation (i.e., cuBLAS)

torch.manual_seed(0)
a = torch.randn((512, 512), device='cuda', dtype=torch.float16)
b = torch.randn((512, 512), device='cuda', dtype=torch.float16)
c_0 = matmul(a, b, activation=None)
c_1 = torch.matmul(a, b)
print(c_0)
print(c_1)
print(triton.testing.allclose(c_0, c_1))

Out:

tensor([[  1.1045, -36.9688,  31.4688,  ..., -11.3984,  24.4531, -32.3438],
        [  6.3555, -19.6094,  34.0938,  ...,  -5.8945,   5.2891,   6.8867],
        [-32.0625,   5.9492,  15.3984,  ..., -21.3906, -23.9844, -10.1328],
        ...,
        [ -5.7031,   7.4492,   8.2656,  ..., -10.6953, -40.0000,  17.7500],
        [ 25.5000,  24.3281,  -8.4688,  ..., -18.9375,  32.5312, -29.9219],
        [ -5.3477,   4.9844,  11.8906,  ...,   5.5898,   6.4023, -17.3125]],
       device='cuda:0', dtype=torch.float16)
tensor([[  1.1045, -36.9688,  31.4688,  ..., -11.3906,  24.4531, -32.3438],
        [  6.3516, -19.6094,  34.0938,  ...,  -5.8906,   5.2812,   6.8828],
        [-32.0625,   5.9531,  15.3984,  ..., -21.4062, -23.9844, -10.1328],
        ...,
        [ -5.7070,   7.4492,   8.2656,  ..., -10.6953, -40.0000,  17.7500],
        [ 25.5000,  24.3438,  -8.4609,  ..., -18.9375,  32.5312, -29.9219],
        [ -5.3477,   4.9805,  11.8828,  ...,   5.5859,   6.4023, -17.3125]],
       device='cuda:0', dtype=torch.float16)
tensor(True, device='cuda:0')

Benchmark

Square Matrix Performance

We can now compare the performance of our kernel against that of cuBLAS. Here we focus on square matrices, but feel free to arrange this script as you wish to benchmark any other matrix shape.

@triton.testing.perf_report(
    triton.testing.Benchmark(
        x_names=['M', 'N', 'K'],  # argument names to use as an x-axis for the plot
        x_vals=[128 * i for i in range(1, 33)],  # different possible values for `x_name`
        line_arg='provider',  # argument name whose value corresponds to a different line in the plot
        line_vals=['cublas', 'cublas + relu', 'triton', 'triton + relu'],  # possible values for `line_arg``
        line_names=["cuBLAS", "cuBLAS (+ torch.nn.LeakyReLU)", "Triton", "Triton (+ LeakyReLU)"],  # label name for the lines
        styles=[('green', '-'), ('green', '--'), ('blue', '-'), ('blue', '--')],  # line styles
        ylabel="TFLOPS",  # label name for the y-axis
        plot_name="matmul-performance",  # name for the plot. Used also as a file name for saving the plot.
        args={}
    )
)
def benchmark(M, N, K, provider):
    a = torch.randn((M, K), device='cuda', dtype=torch.float16)
    b = torch.randn((K, N), device='cuda', dtype=torch.float16)
    if provider == 'cublas':
        ms, min_ms, max_ms = triton.testing.do_bench(lambda: torch.matmul(a, b))
    if provider == 'triton':
        ms, min_ms, max_ms = triton.testing.do_bench(lambda: matmul(a, b))
    if provider == 'cublas + relu':
        torch_relu = torch.nn.ReLU(inplace=True)
        ms, min_ms, max_ms = triton.testing.do_bench(lambda: torch_relu(torch.matmul(a, b)))
    if provider == 'triton + relu':
        ms, min_ms, max_ms = triton.testing.do_bench(lambda: matmul(a, b, activation=leaky_relu))
    perf = lambda ms: 2 * M * N * K * 1e-12 / (ms * 1e-3)
    return perf(ms), perf(max_ms), perf(min_ms)


benchmark.run(show_plots=True, print_data=True)
03 matrix multiplication

Out:

matmul-performance:
         M     cuBLAS  ...     Triton  Triton (+ LeakyReLU)
0    128.0   0.455111  ...   0.512000              0.512000
1    256.0   2.730667  ...   3.276800              2.978909
2    384.0   7.372800  ...   7.899428              7.899428
3    512.0  14.563555  ...  15.420235             15.420235
4    640.0  22.260869  ...  24.380953             24.380953
5    768.0  32.768000  ...  34.028308             34.028308
6    896.0  39.025776  ...  39.025776             39.025776
7   1024.0  49.932191  ...  52.428801             52.428801
8   1152.0  44.566925  ...  45.938215             45.938215
9   1280.0  51.200001  ...  56.109587             56.109587
10  1408.0  64.138541  ...  65.684049             58.621246
11  1536.0  79.526831  ...  76.106321             75.296679
12  1664.0  63.372618  ...  61.636381             62.061463
13  1792.0  72.983276  ...  69.379162             68.533074
14  1920.0  69.467336  ...  68.776119             69.120002
15  2048.0  73.908442  ...  75.573044             74.898285
16  2176.0  83.155572  ...  80.494588             79.855747
17  2304.0  68.446623  ...  73.051599             72.387489
18  2432.0  71.125224  ...  80.269900             79.139336
19  2560.0  77.833728  ...  76.740048             74.812787
20  2688.0  83.737433  ...  80.196737             82.463163
21  2816.0  83.552120  ...  78.442822             77.882512
22  2944.0  82.102191  ...  81.034195             78.979452
23  3072.0  80.202695  ...  84.010539             79.750851
24  3200.0  84.432717  ...  89.012517             86.720870
25  3328.0  79.114032  ...  78.851363             81.071278
26  3456.0  81.518272  ...  87.252780             82.773682
27  3584.0  84.905939  ...  95.654673             95.451583
28  3712.0  84.088676  ...  82.902362             84.159518
29  3840.0  83.655065  ...  84.036474             85.267542
30  3968.0  92.935215  ...  84.797731             83.807647
31  4096.0  93.336389  ...  91.616198             91.118618

[32 rows x 5 columns]

Total running time of the script: ( 2 minutes 15.188 seconds)

Gallery generated by Sphinx-Gallery