#include "isaac/array.h" #include "isaac/kernels/templates/gemm.h" #include "isaac/kernels/keywords.h" #include "isaac/symbolic/preset.h" #include "isaac/exception/operation_not_supported.h" #include "tools/arguments.hpp" #include "tools/vector_types.hpp" #include #include "align.hpp" namespace isaac { namespace templates { gemm_parameters::gemm_parameters(unsigned int simd_width , unsigned int local_size_0, unsigned int KL, unsigned int local_size_1, unsigned int D , unsigned int ms, unsigned int ks, unsigned int ns , fetching_policy_type A_fetching_policy, fetching_policy_type B_fetching_policy , unsigned int local_fetch_0, unsigned int local_fetch_1): base::parameters_type(simd_width, local_size_0, local_size_1, 1), kL(KL), depth(D), mS(ms), kS(ks), nS(ns), A_fetching_policy(A_fetching_policy), B_fetching_policy(B_fetching_policy), local_fetch_0(local_fetch_0), local_fetch_1(local_fetch_1), mL(ms*local_size_0), nL(ns*local_size_1){} unsigned int gemm::lmem_usage(expressions_tuple const & expressions) const { isaac::array_expression const & array_expression = (*expressions.data().front()); numeric_type numeric_t = lhs_most(array_expression.tree(), array_expression.root()).lhs.dtype; unsigned int N = 0; N += p_.kL * p_.mL; N += p_.nL * p_.kL; return N*size_of(numeric_t); } unsigned int gemm::registers_usage(expressions_tuple const & expressions) const { isaac::array_expression const & array_expression = (*expressions.data().front()); numeric_type numeric_t = lhs_most(array_expression.tree(), array_expression.root()).lhs.dtype; unsigned int N = p_.mS * p_.nS + p_.mS * p_.kS + p_.kS * p_.nS; return N*size_of(numeric_t); } unsigned int gemm::temporary_workspace(expressions_tuple const & expressions) const { std::vector MNK = input_sizes(expressions); int_t M = MNK[0]; int_t N = MNK[1]; if(p_.depth > 1) return M*N*p_.depth; return 0; } int gemm::is_invalid_impl(driver::Device const &, expressions_tuple const &) const { if(p_.A_fetching_policy!=FETCH_FROM_LOCAL || p_.B_fetching_policy!=FETCH_FROM_LOCAL) return TEMPLATE_INVALID_FETCHING_POLICY_TYPE; if ((p_.mS % p_.simd_width) > 0 || (p_.nS % p_.simd_width) > 0) return TEMPLATE_MS_NS_MUST_BE_SIMD_WIDTH_MULTIPLE; if(p_.mL > 256 || p_.nL > 256) return TEMPLATE_BLOCK_SIZE_TOO_LARGE; if ( p_.kS % p_.kL == 0) return TEMPLATE_KS_MUST_BE_SMALLER_THAN_KL; if (p_.A_fetching_policy==FETCH_FROM_LOCAL || p_.B_fetching_policy==FETCH_FROM_LOCAL){ if ((p_.local_fetch_0*p_.local_fetch_1) !=(p_.local_size_0*p_.local_size_1)) return TEMPLATE_LOCAL_FETCH_PRODUCT_MUST_MATCH_LOCAL_SIZE_PRODUCT; } if (p_.A_fetching_policy==FETCH_FROM_LOCAL) { unsigned int bound1 = (A_trans_=='N')?p_.kL:p_.mL; unsigned int bound0 = (A_trans_=='N')?p_.mL:p_.kL; if (p_.local_fetch_1>0 && (bound1 % p_.local_fetch_1)> 0) return A_trans_=='N'?TEMPLATE_LOCAL_FETCH_1_MUST_BE_KL_MULTIPLE:TEMPLATE_LOCAL_FETCH_1_MUST_BE_ML_MULTIPLE; if (p_.local_fetch_0>0 && (bound0 % (p_.local_fetch_0*p_.simd_width)) > 0) return A_trans_=='N'?TEMPLATE_LOCAL_FETCH_0_MUST_BE_NL_MULTIPLE:TEMPLATE_LOCAL_FETCH_0_MUST_BE_KL_MULTIPLE; } if (p_.B_fetching_policy==FETCH_FROM_LOCAL) { unsigned int bound1 = (B_trans_=='T')?p_.kL:p_.nL; unsigned int bound0 = (B_trans_=='T')?p_.nL:p_.kL; if (p_.local_fetch_1>0 && (bound1 % p_.local_fetch_1)> 0) return B_trans_=='T'?TEMPLATE_LOCAL_FETCH_1_MUST_BE_KL_MULTIPLE:TEMPLATE_LOCAL_FETCH_1_MUST_BE_ML_MULTIPLE; if (p_.local_fetch_0>0 && (bound0 % (p_.local_fetch_0*p_.simd_width)) > 0) return B_trans_=='T'?TEMPLATE_LOCAL_FETCH_1_MUST_BE_KL_MULTIPLE:TEMPLATE_LOCAL_FETCH_1_MUST_BE_ML_MULTIPLE; } return TEMPLATE_VALID; } std::string gemm::generate_impl(std::string const & suffix, expressions_tuple const & expressions, driver::Device const & device, std::vector const &) const { using std::string; using tools::to_string; driver::backend_type backend = device.backend(); bool has_depth = p_.depth > 1; #define VLOAD(offset, ptr) vload(p_.simd_width, sdtype, offset, ptr, backend) #define VSTORE(value, offset, ptr) vstore(p_.simd_width, sdtype, value, offset, ptr, backend) #define ASTRIDE1 string(check_bounds_?"*Astride1":"") #define BSTRIDE1 string(check_bounds_?"*Bstride1":"") #define CSTRIDE1 string(check_bounds_?"*Cstride1":"") ////////////////// /// INIT /// ////////////// kernel_generation_stream stream; array_expression const & st = (*expressions.data().front()); numeric_type dtype = lhs_most(st.tree(), st.root()).lhs.dtype; std::string sdtype = to_string(dtype); std::string vdtype = append_width(sdtype, p_.simd_width); std::string _size_t = size_type(device); std::string vint = append_width("int", p_.simd_width); ////////////////// /// DECLARATIONS /// ////////////// std::string gemm_name = "gemm"; std::string reduce_name = "reduce"; gemm_name += suffix; reduce_name += suffix; switch(backend) { #ifdef ISAAC_WITH_CUDA case driver::CUDA: stream << "#include \"helper_math.h\"" << std::endl; break; #endif case driver::OPENCL: stream << " __attribute__((reqd_work_group_size(" << p_.local_size_0 << "," << p_.local_size_1 << ",1)))" << std::endl; break; } stream << KernelPrefix(backend) << " void " << gemm_name << "(" << _size_t << " M, " << _size_t << " N, " << _size_t << " K, " << Global(backend) << " " << sdtype << "* C, " << _size_t << " ldc," << _size_t << " offc," << _size_t << " Cstride1, " << sdtype << " alpha," << Global(backend) << " " << sdtype << "* A, " << _size_t << " lda," << _size_t << " offa," << _size_t << " Astride1," << Global(backend) << " " << sdtype << "* B, " << _size_t << " ldb," << _size_t << " offb," << _size_t << " Bstride1," << sdtype << " beta)" << std::endl; stream << "{" << std::endl; stream.inc_tab(); ///Declare stream << "//blocks" << std::endl; stream << sdtype << " rC[" << p_.mS << "][" << p_.nS << "] = {{0}};" << std::endl; stream << vdtype << " rA[" << p_.kS << "][" << p_.mS/p_.simd_width << "];" << std::endl; stream << vdtype << " rB[" << p_.kS << "][" << p_.nS/p_.simd_width << "];" << std::endl; stream << std::endl; stream << "//pointers" << std::endl; size_t llda = (A_trans_=='N')?p_.mL:p_.kL; size_t lldb = (B_trans_=='T')?p_.nL:p_.kL; stream << Local(backend) << " " << sdtype << " lA[" << p_.kL*p_.mL << "];" << std::endl; stream << Local(backend) << " " << sdtype << " lB[" << p_.kL*p_.nL << "];" << std::endl; unsigned int npA = p_.mL/(A_trans_=='N'?p_.local_fetch_0*p_.simd_width:p_.local_fetch_1); unsigned int npB = p_.nL/(B_trans_=='T'?p_.local_fetch_0*p_.simd_width:p_.local_fetch_1); stream << "__global " << sdtype << "* Ai[" << npA << "];" << std::endl; stream << "__global " << sdtype << "* Bi[" << npB << "];" << std::endl; stream << std::endl; stream << "//identifiers" << std::endl; stream << "int2 idT;" << std::endl; stream << "int idt;" << std::endl; if(has_depth) stream << "int gidz, div, offz;" << std::endl; stream << "int4 ids = (int4)(" << GroupIdx0(backend) << "," << GroupIdx1(backend) << "," << LocalIdx0(backend) << "," << LocalIdx1(backend) << ");" << std::endl; stream << std::endl; stream << "//offsets" << std::endl; stream << "A += offa;" << std::endl; stream << "B += offb;" << std::endl; stream << "C += offc;" << std::endl; if(has_depth) { stream << "gidz = " << GroupIdx2(backend) << ";" << std::endl; stream << "div = (K+" << p_.depth-1 << ")/" << p_.depth << ";" << std::endl; stream << "offz = div*gidz;" << std::endl; stream << "K = min(K - div*gidz, (" << _size_t << ")div);" << std::endl; } stream << "idt = " << p_.local_size_0 << "*ids.w + ids.z;" << std::endl; stream << "idT.y = idt/" << p_.local_fetch_0 << ";" << std::endl; stream << "idT.x = idt - " << p_.local_fetch_0 << "*idT.y;" << std::endl; stream << std::endl; stream << "//Adjust pointers and bounds per work-item" << std::endl; stream << "ids.x *= " << p_.mL << ";" << std::endl; stream << "ids.y *= " << p_.nL << ";" << std::endl; stream << "idT.x *= " << p_.simd_width << ";" << std::endl; stream << "M -= ids.x;" << std::endl; if(A_trans_=='N') stream << "M -= idT.x;" << std::endl; else stream << "M -= idT.y;" << std::endl; stream << "N -= ids.y;" << std::endl; if(B_trans_=='T') stream << "N -= idT.x;" << std::endl; else stream << "N -= idT.y;" << std::endl; if (A_trans_=='N') { stream << "A += ids.x" << ASTRIDE1 << ";" << std::endl; stream << "A += idT.y*lda;" << std::endl; if(has_depth) stream << "A += offz*lda;" << std::endl; } else { stream << "A += ids.x*lda;" << std::endl; stream << "A += idT.x" << ASTRIDE1 << ";" << std::endl; if(has_depth) stream << "A += offz;" << std::endl; } if(B_trans_=='T') { stream << "B += ids.y" << BSTRIDE1 << ";" << std::endl; stream << "B += idT.y*ldb;" << std::endl; if(has_depth) stream << "B += offz*ldb;" << std::endl; } else { stream << "B += ids.y*ldb;" << std::endl; stream << "B += idT.x" << BSTRIDE1 << ";" << std::endl; if(has_depth) stream << "B += offz;" << std::endl; } stream << "#pragma unroll" << std::endl; stream << "for(int i = 0 ; i < " << npA << " ; ++i){" << std::endl; stream.inc_tab(); stream << "Ai[i] = A;" << std::endl; stream.dec_tab(); stream << "}" << std::endl; stream << std::endl; stream << "#pragma unroll" << std::endl; stream << "for(int i = 0 ; i < " << npB << " ; ++i){" << std::endl; stream.inc_tab(); stream << "Bi[i] = B;" << std::endl; stream.dec_tab(); stream << "}" << std::endl; stream << std::endl; for(unsigned int i = 0 ; i < npA ; i++ ) if (A_trans_=='N') stream << "Ai[" << i << "] += select(0, (int)((idT.x + " << i*p_.local_fetch_0*p_.simd_width << ")" << ASTRIDE1 << "), " << i*p_.local_fetch_0*p_.simd_width << " < M);" << std::endl; else stream << "Ai[" << i << "] += select(0, (int)((idT.y + " << i*p_.local_fetch_1 << ")*lda), " << i*p_.local_fetch_1 << " < M);" << std::endl; for(unsigned int i = 0 ; i < npB ; i++ ) if (B_trans_=='T') stream << "Bi[" << i << "] += select(0, (int)((idT.x + " << i*p_.local_fetch_0*p_.simd_width << ")" << BSTRIDE1 << "), " << i*p_.local_fetch_0*p_.simd_width << " < N);" << std::endl; else stream << "Bi[" << i << "] += select(0, (int)((idT.y + " << i*p_.local_fetch_1 << ")*ldb), " << i*p_.local_fetch_1 << " < N);" << std::endl; stream << std::endl; stream << "//Outer loop" << std::endl; stream << "while(K >=" << p_.kL << ")" << std::endl; stream << "{" << std::endl; stream.inc_tab(); auto fetch_to_lds = [&](bool last_iteration) { stream << LocalBarrier(backend) << ";" << std::endl; stream << LocalPtr(backend) << " " << sdtype << "* ldsA = lA + idT.y*" << llda << " + idT.x;" << std::endl; stream << LocalPtr(backend) << " " << sdtype << "* ldsB = lB + idT.y*" << lldb << " + idT.x;" << std::endl; stream << "//Fetch A to local memory" << std::endl; if (A_trans_=='N') { for(unsigned int k = 0; k < p_.kL; k += p_.local_fetch_1) for(unsigned int m = 0; m < p_.mL; m += p_.local_fetch_0*p_.simd_width) { std::string mm = to_string(m/(p_.simd_width*p_.local_fetch_0)); std::string kk = to_string(k); if(last_iteration) for(unsigned int s = 0 ; s < p_.simd_width ; ++s) stream << "ldsA[" << k*llda + m + s << "] = (condy" << k << " && " << s << "< M)? Ai[" << mm << "][" << k << "*lda + " << s << "] : 0;" << std::endl; else stream << VSTORE(VLOAD("0" ,"&Ai[" + mm +"][" + kk + "*lda]"), "0", "ldsA + " + to_string(k*llda+m)) << ";" << std::endl; } } else { for(unsigned int k = 0; k < p_.kL; k += p_.local_fetch_0*p_.simd_width) for(unsigned int m = 0; m < p_.mL; m += p_.local_fetch_1) { std::string mm = to_string(m/p_.local_fetch_1); std::string kk = to_string(k); if(last_iteration) for(unsigned int s = 0 ; s < p_.simd_width ; ++s) stream << "ldsA[" << m*llda + k + s << "] = condx" << k + s << "? Ai[" << mm << "][" << k + s << ASTRIDE1 << "] : 0;" << std::endl; else stream << VSTORE(VLOAD("0", "&Ai[" + mm + "][" + kk + ASTRIDE1 + "]"), "0", "ldsA + " + to_string(m*llda+k)) << ";" << std::endl; } } stream << "//Fetch B to local memory" << std::endl; if (B_trans_=='T') { for(unsigned int k = 0; k < p_.kL; k += p_.local_fetch_1) for(unsigned int n = 0; n < p_.nL; n += p_.local_fetch_0*p_.simd_width) { std::string nn = to_string(n/(p_.simd_width*p_.local_fetch_0)); std::string kk = to_string(k); if(last_iteration) for(unsigned int s = 0 ; s < p_.simd_width ; ++s) stream << "ldsB[" << k*lldb + n + s << "] = (condy" << k << " && " << s << "< N)? Bi[" << nn << "][" << kk << "*ldb +" << s << "] : 0;" << std::endl; else stream << VSTORE(VLOAD("0" ,"&Bi[" + nn +"][" + kk + "*ldb]"), "0", "ldsB + " + to_string(k*lldb+n)) << ";" << std::endl; } } else { for(unsigned int k = 0; k < p_.kL; k += p_.local_fetch_0*p_.simd_width) for(unsigned int n = 0; n < p_.nL; n += p_.local_fetch_1) { std::string nn = to_string(n/p_.local_fetch_1); std::string kk = to_string(k); if(last_iteration) for(unsigned int s = 0 ; s < p_.simd_width ; ++s) stream << "ldsB[" << n*lldb + k + s << "] = condx" << k + s << "? Bi[" << nn << "][" << k + s << BSTRIDE1 << "] : 0;" << std::endl; else stream << VSTORE(VLOAD("0", "&Bi[" + nn + "][" + kk + BSTRIDE1 + "]"), "0", "ldsB + " + to_string(n*lldb+k)) << ";" << std::endl; } } if(A_trans_=='N') stream << "ldsA = lA + ids.z*" << p_.simd_width << ";" << std::endl; else stream << "ldsA = lA + ids.z*" << llda*p_.simd_width << ";" << std::endl; if(B_trans_=='T') stream << "ldsB = lB + ids.w*" << p_.simd_width << ";" << std::endl; else stream << "ldsB = lB + ids.w*" << lldb*p_.simd_width << ";" << std::endl; stream << LocalBarrier(backend) << ";" << std::endl; stream << "//Inner loop" << std::endl; stream << "for(unsigned int k = 0; k < " << p_.kL << "; k+=" << p_.kS << "){" << std::endl; stream.inc_tab(); stream << "//Fetch A to registers" << std::endl; stream << "#pragma unroll" << std::endl; stream << "for(unsigned int kk = 0; kk < " << p_.kS << "; kk++)" << std::endl; stream << "#pragma unroll " << p_.mS/p_.simd_width << std::endl; stream << "for(unsigned int mm = 0; mm < " << p_.mS/p_.simd_width << "; mm++)" << std::endl; stream << "{" << std::endl; stream.inc_tab(); if(A_trans_=='N') stream << "rA[kk][mm] = " << VLOAD("0", "ldsA + k*" + to_string(llda) + " + mm*" + to_string(p_.local_size_0*p_.simd_width) + "+ kk*" + to_string(llda)) << ";" << std::endl; else { if(p_.simd_width==1) stream << "rA[kk][mm] = ldsA[k + mm*" << p_.local_size_0*llda << "+ kk" << "];" << std::endl; else for(unsigned int s = 0 ; s < p_.simd_width ; ++s) stream << access_vector_type("rA[kk][mm]", s) << " = ldsA[k + (mm*" << p_.simd_width*p_.local_size_0 << " + " << s << ")*" << llda << "+ kk];" << std::endl; } stream.dec_tab(); stream << "}" << std::endl; stream << "//Fetch B to registers" << std::endl; stream << "#pragma unroll " << p_.kS << std::endl; stream << "for(unsigned int kk = 0; kk < " << p_.kS << "; kk++)" << std::endl; stream << "#pragma unroll " << p_.nS/p_.simd_width << std::endl; stream << "for(unsigned int nn = 0; nn < " << p_.nS/p_.simd_width << "; nn++)" << std::endl; stream << "{" << std::endl; stream.inc_tab(); if(B_trans_=='T') stream << "rB[kk][nn] = " << VLOAD("0", "ldsB + k*" + to_string(lldb) + " + nn*" + to_string(p_.local_size_1*p_.simd_width) + "+ kk*" + to_string(lldb)) << ";" << std::endl; else { if(p_.simd_width==1) stream << "rB[kk][nn] = ldsB[k" << " + nn*" << p_.local_size_1*lldb << "+ kk" << "];" << std::endl; else for(unsigned int s = 0 ; s < p_.simd_width ; ++s) stream << access_vector_type("rB[kk][nn]", s) << " = ldsB[k" << " + (nn*" << p_.simd_width*p_.local_size_1 << " + " << s << ")*" << lldb << "+ kk];" << std::endl; } stream.dec_tab(); stream << "}" << std::endl; stream << "//FMA computations" << std::endl; for(unsigned int kk=0 ; kk < p_.kS; ++kk) for(unsigned int nn=0; nn < p_.nS; ++nn) for(unsigned int mm=0; mm < p_.mS; ++mm) { string res_str, lhs_str, rhs_str; res_str = "rC[" + to_string(mm) + "][" + to_string(nn) + "]"; if (p_.simd_width==1) lhs_str = "rA[" + to_string(kk) + "][" + to_string(mm) + "]"; else lhs_str = access_vector_type("rA[" + to_string(kk) + "][" + to_string(mm/p_.simd_width) + "]", mm%p_.simd_width); if (p_.simd_width==1) rhs_str = "rB[" + to_string(kk) + "]["+to_string(nn)+"]"; else rhs_str = access_vector_type("rB[" + to_string(kk) + "]["+to_string(nn/p_.simd_width)+"]", nn%p_.simd_width); stream << res_str << "=" << "fma(" << lhs_str << "," << rhs_str << "," << res_str << ");" << std::endl; } stream.dec_tab(); stream << "}" << std::endl; stream << "K -= " << p_.kL << ";" << std::endl; //Increment A pointers to global memory if (A_trans_=='N') for(unsigned int i = 0 ; i < npA ; ++i) stream << "Ai[" << i << "] += " << p_.kL << "*lda;" << std::endl; else for(unsigned int i = 0 ; i < npA ; ++i) stream << "Ai[" << i << "] += " << p_.kL << ASTRIDE1 << ";" << std::endl; //Increment B pointers to global memory if (B_trans_=='T') for(unsigned int i = 0 ; i < npB ; ++i) stream << "Bi[" << i << "] += " << p_.kL << "*ldb;" << std::endl; else for(unsigned int i = 0 ; i < npB ; ++i) stream << "Bi[" << i << "] += " << p_.kL << BSTRIDE1 << ";" << std::endl; }; fetch_to_lds(false); stream.dec_tab(); stream << "}" << std::endl; if(A_trans_=='N' || B_trans_=='T') stream << "int Ky = K - idT.y;" << std::endl; if(A_trans_=='T' || B_trans_=='N') stream << "int Kx = K - idT.x;" << std::endl; if(A_trans_=='N' || B_trans_=='T') for(unsigned int k = 0; k < p_.kL; k += p_.local_fetch_1) stream << "int condy" << k << " = " << k << " < Ky;" << std::endl; if(A_trans_=='T' || B_trans_=='N') { for(unsigned int k = 0 ; k < p_.kL ; k += p_.local_fetch_0*p_.simd_width) for(unsigned int s = 0 ; s < p_.simd_width ; ++s) stream << "int condx" << k + s << " = " << k + s << " < Kx;" << std::endl; } fetch_to_lds(true); stream << "//Write back C" << std::endl; stream << "M += ids.x;" << std::endl; if(A_trans_=='N') stream << "M += idT.x;" << std::endl; else stream << "M += idT.y;" << std::endl; if(B_trans_=='T') stream << "N += idT.x;" << std::endl; else stream << "N += idT.y;" << std::endl; stream << "N += ids.y;" << std::endl; stream << "C += ids.x" << CSTRIDE1 << ";" << std::endl; stream << "C += ids.z*" << p_.simd_width << CSTRIDE1 << ";" << std::endl; stream << "C += ids.y*ldc;" << std::endl; stream << "C += ids.w*" << p_.simd_width << "*ldc;" << std::endl; if(has_depth) stream << "C += gidz*ldc*N;" << std::endl; stream << "M -= ids.x;" << std::endl; stream << "M -= ids.z*" << p_.simd_width << ";" << std::endl; stream << "N -= ids.y;" << std::endl; stream << "N -= ids.w*" << p_.simd_width << ";" << std::endl; stream << "int ibm[" << p_.mS << "];" << std::endl; for(unsigned int m=0; m < p_.mS; ++m) { string Ci = to_string((m/p_.simd_width)*(p_.local_size_0*p_.simd_width) + m%p_.simd_width); stream << "ibm[" << m << "] = " << Ci << " < M;" << std::endl; } for(unsigned int n=0; n < p_.nS; ++n) { string Cj = to_string((n/p_.simd_width)*(p_.local_size_1*p_.simd_width) + n%p_.simd_width); stream << "if(" << Cj << " >= N) return;" << std::endl; for(unsigned int m=0; m < p_.mS; ++m) stream << "rC[" << m << "][" << n << "] *= alpha;" << std::endl; for(unsigned int m=0; m < p_.mS; ++m) { string Ci = to_string((m/p_.simd_width)*(p_.local_size_0*p_.simd_width) + m%p_.simd_width); stream << "if(ibm[" << m << "]) "; stream << "C[" << Ci << CSTRIDE1 << "] = rC[" << m << "][" << n << "] + select((" << sdtype << ")0, C[" << Ci << CSTRIDE1 << "], beta>0);" << std::endl; } if((n+1)%p_.simd_width==0) stream << "C += ldc*" << p_.local_size_1*p_.simd_width - p_.simd_width + 1 << ";" << std::endl; else stream << "C += ldc;" << std::endl; } stream.dec_tab(); stream << "}" << std::endl; if(has_depth) { stream << KernelPrefix(backend) << " void " << reduce_name << "(" << _size_t << " M, " << _size_t << " N, " << _size_t << " D, " << Global(backend) << " " << sdtype << "* Z, " << _size_t << " Zld," << Global(backend) << " " << sdtype << "* C, " << _size_t << " ldc," << _size_t << " Cstart1," << _size_t << " Cstart2," << _size_t << " Cstride1, " << _size_t << " Cstride2, " << sdtype << " beta)" << std::endl; stream << "{" << std::endl; stream.inc_tab(); stream << "C += Cstart1 + Cstart2*ldc;" << std::endl; stream << "ldc *= Cstride2;" << std::endl; stream << "for(unsigned int i = " << GlobalIdx0(backend) << " ; i < M ; i += " << GlobalSize0(backend) << ")" << std::endl; stream << "{" << std::endl; stream.inc_tab(); stream << "for(unsigned int j = " << GlobalIdx1(backend) << " ; j < N ; j += " << GlobalSize1(backend) << ")" << std::endl; stream << "{" << std::endl; stream.inc_tab(); stream << sdtype << " acc = 0;" << std::endl; stream << "for(unsigned int k = 0 ; k < D ; k++)" << std::endl; stream.inc_tab(); stream << "acc += Z[i + j*Zld + k*Zld*N];" << std::endl; stream.dec_tab(); stream << "C[i*Cstride1 + j*ldc] = acc + beta*C[i + j*ldc];" << std::endl; stream.dec_tab(); stream << "}" << std::endl; stream.dec_tab(); stream << "}" << std::endl; stream.dec_tab(); stream << "}" << std::endl; } // if(p_.simd_width>1) // std::cout << stream.str() << std::endl; return stream.str(); #undef VLOAD #undef VST0RE } void gemm::enqueue_block(driver::CommandQueue & /*queue*/, int_t M, int_t N, int_t K, array const & A, array const & B, array const & C, value_scalar const & alpha, value_scalar const & beta, driver::Program const & program, std::string const & suffix, execution_options_type const & options) { using tools::align; if(M==0 || N==0 || K==0) return; std::string gemm_name = "gemm"; std::string reduce_name = "reduce"; gemm_name += suffix; reduce_name += suffix; bind_all_unique binder; array const * out = &C; std::unique_ptr tmp; if(p_.depth > 1){ tmp.reset(new array(M, N, p_.depth, C.dtype(), C.context())); out = tmp.get(); } driver::Kernel gemm(program, gemm_name.c_str()); driver::NDRange local(p_.local_size_0, p_.local_size_1, 1); driver::NDRange global(align(align(M,p_.mS)/p_.mS, p_.local_size_0), align(align(N,p_.nS)/p_.nS, p_.local_size_1), p_.depth); unsigned int current_arg = 0; set_arguments_functor helper(binder, current_arg, gemm); gemm.setSizeArg(current_arg++, M); gemm.setSizeArg(current_arg++, N); gemm.setSizeArg(current_arg++, K); gemm.setArg(current_arg++, out->data()); gemm.setSizeArg(current_arg++, out->ld()*out->stride()[1]); gemm.setSizeArg(current_arg++, out->start()[0] + out->start()[1]*out->ld()); gemm.setSizeArg(current_arg++, out->stride()[0]); helper.set_arguments(alpha.dtype(), alpha.values()); gemm.setArg(current_arg++, A.data()); gemm.setSizeArg(current_arg++, A.ld()*A.stride()[1]); gemm.setSizeArg(current_arg++, (A.start()[0] + A.start()[1]*A.ld())); gemm.setSizeArg(current_arg++, A.stride()[0]); gemm.setArg(current_arg++, B.data()); gemm.setSizeArg(current_arg++, B.ld()*B.stride()[1]); gemm.setSizeArg(current_arg++, B.start()[0] + B.start()[1]*B.ld()); gemm.setSizeArg(current_arg++, B.stride()[0]); helper.set_arguments(beta.dtype(), beta.values()); options.enqueue(program.context(), gemm, global, local); if(p_.depth > 1) { unsigned int current_arg = 0; driver::Kernel reduce(program, reduce_name.c_str()); driver::NDRange local(p_.local_size_0, p_.local_size_1); driver::NDRange global(align(M, p_.local_size_0), align(N, p_.local_size_1)); set_arguments_functor helper(binder, current_arg, reduce); reduce.setSizeArg(current_arg++, M); reduce.setSizeArg(current_arg++, N); reduce.setSizeArg(current_arg++, p_.depth); reduce.setArg(current_arg++, out->data()); reduce.setSizeArg(current_arg++, out->ld()); reduce.setArg(current_arg++, C.data()); reduce.setSizeArg(current_arg++, C.ld()); reduce.setSizeArg(current_arg++, C.start()[0]); reduce.setSizeArg(current_arg++, C.start()[1]); reduce.setSizeArg(current_arg++, C.stride()[0]); reduce.setSizeArg(current_arg++, C.stride()[1]); helper.set_arguments(beta.dtype(), beta.values()); options.enqueue(program.context(), reduce, global, local); } } array gemm::create_slice(array & M, int_t s0_0, int_t s0_1, int_t s1_0, int_t s1_1, bool swap) { slice s0(s0_0, s0_1); slice s1(s1_0, s1_1); if (swap) std::swap(s0, s1); return array(M, s0, s1); } std::vector gemm::infos(expressions_tuple const & expressions, symbolic::preset::gemm::args& arguments) const { isaac::array_expression & array_expression = (*expressions.data().front()); array_expression::container_type & array = array_expression.tree(); std::size_t root = array_expression.root(); arguments = symbolic::preset::gemm::check(array, root); int_t M = arguments.C->array->shape()[0]; int_t N = arguments.C->array->shape()[1]; int_t K = (A_trans_=='T')?arguments.A->array->shape()[0]:arguments.A->array->shape()[1]; return {M, N, K}; } gemm::gemm(gemm_parameters const & parameters, bool check_bounds, char A_trans, char B_trans) : base_impl(parameters, BIND_ALL_UNIQUE), A_trans_(A_trans), B_trans_(B_trans), check_bounds_(check_bounds) { if(A_trans_=='N' && B_trans_=='N') type_ = GEMM_NN_TYPE; else if(A_trans_=='T' && B_trans_=='N') type_ = GEMM_TN_TYPE; else if(A_trans_=='N' && B_trans_=='T') type_ = GEMM_NT_TYPE; else if(A_trans_=='T' && B_trans_=='T') type_ = GEMM_TT_TYPE; else throw; } std::vector gemm::input_sizes(expressions_tuple const & expressions) const { symbolic::preset::gemm::args dummy; return infos(expressions, dummy); } void gemm::enqueue(driver::CommandQueue & queue, driver::Program const & program, std::string const & suffix, base & fallback_base, controller const & ctr) { using namespace tools; gemm & fallback = (gemm&)fallback_base; expressions_tuple const & expressions = ctr.x(); symbolic::preset::gemm::args args; std::vector MNK = infos(expressions, args); int_t M = MNK[0]; int_t N = MNK[1]; int_t K = MNK[2]; //Skip if empty if(M==0 || N == 0 || K ==0) return; //Extract array * pA = args.A->array; array * pB = args.B->array; array * pC = args.C->array; //Check if requires fallback int_t ldstrideA = pA->stride()[0]; int_t ldstrideB = pB->stride()[0]; int_t ldstrideC = pC->stride()[0]; numeric_type dtype = args.C->dtype; //Enqueue value_scalar beta(0, dtype); if(args.beta) beta = value_scalar(args.beta->vscalar, dtype); value_scalar alpha(1, dtype); if(args.alpha) alpha = value_scalar(args.alpha->vscalar, dtype); execution_options_type const & options = ctr.execution_options(); if (ldstrideA> 1 || ldstrideB > 1 || ldstrideC > 1) { fallback.enqueue_block(queue, M, N, K, *pA, *pB, *pC, alpha, beta, program, "fallback", options); } else { enqueue_block(queue, M, N, K, *pA, *pB, *pC, alpha, beta, program, suffix, options); } } // gemm_nn::gemm_nn(unsigned int simd , int_t ls0, int_t KL, int_t ls1, int_t D , int_t ms, int_t ks, int_t ns , fetching_policy_type Afetch , fetching_policy_type Bfetch , int_t lfetch0, int_t lfetch1, bool check_bound) : gemm(gemm_parameters(simd, ls0, KL, ls1, D, ms, ks, ns, Afetch, Bfetch, lfetch0, lfetch1), check_bound, 'N', 'N') { } // gemm_tn::gemm_tn(unsigned int simd , int_t ls0, int_t KL, int_t ls1, int_t D , int_t ms, int_t ks, int_t ns , fetching_policy_type Afetch , fetching_policy_type Bfetch , int_t lfetch0, int_t lfetch1, bool check_bound) : gemm(gemm_parameters(simd, ls0, KL, ls1, D, ms, ks, ns, Afetch, Bfetch, lfetch0, lfetch1), check_bound, 'T', 'N') { } // gemm_nt::gemm_nt(unsigned int simd , int_t ls0, int_t KL, int_t ls1, int_t D , int_t ms, int_t ks, int_t ns , fetching_policy_type Afetch , fetching_policy_type Bfetch , int_t lfetch0, int_t lfetch1, bool check_bound) : gemm(gemm_parameters(simd, ls0, KL, ls1, D, ms, ks, ns, Afetch, Bfetch, lfetch0, lfetch1), check_bound, 'N', 'T') { } // gemm_tt::gemm_tt(unsigned int simd , int_t ls0, int_t KL, int_t ls1, int_t D , int_t ms, int_t ks, int_t ns , fetching_policy_type Afetch , fetching_policy_type Bfetch , int_t lfetch0, int_t lfetch1, bool check_bound) : gemm(gemm_parameters(simd, ls0, KL, ls1, D, ms, ks, ns, Afetch, Bfetch, lfetch0, lfetch1), check_bound, 'T', 'T') { } } }