# This file is part of DEAP. # # DEAP is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as # published by the Free Software Foundation, either version 3 of # the License, or (at your option) any later version. # # DEAP is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with DEAP. If not, see . # Special thanks to Nikolaus Hansen for providing major part of # this code. The CMA-ES algorithm is provided in many other languages # and advanced versions at http://www.lri.fr/~hansen/cmaesintro.html. """A module that provides support for the Covariance Matrix Adaptation Evolution Strategy. """ import numpy import copy from math import sqrt, log, exp class Strategy(object): """ A strategy that will keep track of the basic parameters of the CMA-ES algorithm. :param centroid: An iterable object that indicates where to start the evolution. :param sigma: The initial standard deviation of the distribution. :param parameter: One or more parameter to pass to the strategy as described in the following table, optional. +----------------+---------------------------+----------------------------+ | Parameter | Default | Details | +================+===========================+============================+ | ``lambda_`` | ``int(4 + 3 * log(N))`` | Number of children to | | | | produce at each generation,| | | | ``N`` is the individual's | | | | size (integer). | +----------------+---------------------------+----------------------------+ | ``mu`` | ``int(lambda_ / 2)`` | The number of parents to | | | | keep from the | | | | lambda children (integer). | +----------------+---------------------------+----------------------------+ | ``cmatrix`` | ``identity(N)`` | The initial covariance | | | | matrix of the distribution | | | | that will be sampled. | +----------------+---------------------------+----------------------------+ | ``weights`` | ``"superlinear"`` | Decrease speed, can be | | | | ``"superlinear"``, | | | | ``"linear"`` or | | | | ``"equal"``. | +----------------+---------------------------+----------------------------+ | ``cs`` | ``(mueff + 2) / | Cumulation constant for | | | (N + mueff + 3)`` | step-size. | +----------------+---------------------------+----------------------------+ | ``damps`` | ``1 + 2 * max(0, sqrt(( | Damping for step-size. | | | mueff - 1) / (N + 1)) - 1)| | | | + cs`` | | +----------------+---------------------------+----------------------------+ | ``ccum`` | ``4 / (N + 4)`` | Cumulation constant for | | | | covariance matrix. | +----------------+---------------------------+----------------------------+ | ``ccov1`` | ``2 / ((N + 1.3)^2 + | Learning rate for rank-one | | | mueff)`` | update. | +----------------+---------------------------+----------------------------+ | ``ccovmu`` | ``2 * (mueff - 2 + 1 / | Learning rate for rank-mu | | | mueff) / ((N + 2)^2 + | update. | | | mueff)`` | | +----------------+---------------------------+----------------------------+ """ def __init__(self, centroid, sigma, **kargs): self.params = kargs # Create a centroid as a numpy array self.centroid = numpy.array(centroid) self.dim = len(self.centroid) self.sigma = sigma self.pc = numpy.zeros(self.dim) self.ps = numpy.zeros(self.dim) self.chiN = sqrt(self.dim) * (1 - 1. / (4. * self.dim) + \ 1. / (21. * self.dim**2)) self.C = self.params.get("cmatrix", numpy.identity(self.dim)) self.diagD, self.B = numpy.linalg.eigh(self.C) indx = numpy.argsort(self.diagD) self.diagD = self.diagD[indx]**0.5 self.B = self.B[:, indx] self.BD = self.B * self.diagD self.cond = self.diagD[indx[-1]]/self.diagD[indx[0]] self.lambda_ = self.params.get("lambda_", int(4 + 3 * log(self.dim))) self.update_count = 0 self.computeParams(self.params) def generate(self, ind_init): """Generate a population of :math:`\lambda` individuals of type *ind_init* from the current strategy. :param ind_init: A function object that is able to initialize an individual from a list. :returns: A list of individuals. """ arz = numpy.random.standard_normal((self.lambda_, self.dim)) arz = self.centroid + self.sigma * numpy.dot(arz, self.BD.T) return map(ind_init, arz) def update(self, population): """Update the current covariance matrix strategy from the *population*. :param population: A list of individuals from which to update the parameters. """ population.sort(key=lambda ind: ind.fitness, reverse=True) old_centroid = self.centroid self.centroid = numpy.dot(self.weights, population[0:self.mu]) c_diff = self.centroid - old_centroid # Cumulation : update evolution path self.ps = (1 - self.cs) * self.ps \ + sqrt(self.cs * (2 - self.cs) * self.mueff) / self.sigma \ * numpy.dot(self.B, (1. / self.diagD) \ * numpy.dot(self.B.T, c_diff)) hsig = float((numpy.linalg.norm(self.ps) / sqrt(1. - (1. - self.cs)**(2. * (self.update_count + 1.))) / self.chiN < (1.4 + 2. / (self.dim + 1.)))) self.update_count += 1 self.pc = (1 - self.cc) * self.pc + hsig \ * sqrt(self.cc * (2 - self.cc) * self.mueff) / self.sigma \ * c_diff # Update covariance matrix artmp = population[0:self.mu] - old_centroid self.C = (1 - self.ccov1 - self.ccovmu + (1 - hsig) \ * self.ccov1 * self.cc * (2 - self.cc)) * self.C \ + self.ccov1 * numpy.outer(self.pc, self.pc) \ + self.ccovmu * numpy.dot((self.weights * artmp.T), artmp) \ / self.sigma**2 self.sigma *= numpy.exp((numpy.linalg.norm(self.ps) / self.chiN - 1.) \ * self.cs / self.damps) self.diagD, self.B = numpy.linalg.eigh(self.C) indx = numpy.argsort(self.diagD) self.cond = self.diagD[indx[-1]]/self.diagD[indx[0]] self.diagD = self.diagD[indx]**0.5 self.B = self.B[:, indx] self.BD = self.B * self.diagD def computeParams(self, params): """Computes the parameters depending on :math:`\lambda`. It needs to be called again if :math:`\lambda` changes during evolution. :param params: A dictionary of the manually set parameters. """ self.mu = params.get("mu", int(self.lambda_ / 2)) rweights = params.get("weights", "superlinear") if rweights == "superlinear": self.weights = log(self.mu + 0.5) - \ numpy.log(numpy.arange(1, self.mu + 1)) elif rweights == "linear": self.weights = self.mu + 0.5 - numpy.arange(1, self.mu + 1) elif rweights == "equal": self.weights = numpy.ones(self.mu) else: raise RuntimeError("Unknown weights : %s" % rweights) self.weights /= sum(self.weights) self.mueff = 1. / sum(self.weights**2) self.cc = params.get("ccum", 4. / (self.dim + 4.)) self.cs = params.get("cs", (self.mueff + 2.) / (self.dim + self.mueff + 3.)) self.ccov1 = params.get("ccov1", 2. / ((self.dim + 1.3)**2 + \ self.mueff)) self.ccovmu = params.get("ccovmu", 2. * (self.mueff - 2. + \ 1. / self.mueff) / \ ((self.dim + 2.)**2 + self.mueff)) self.ccovmu = min(1 - self.ccov1, self.ccovmu) self.damps = 1. + 2. * max(0, sqrt((self.mueff - 1.) / \ (self.dim + 1.)) - 1.) + self.cs self.damps = params.get("damps", self.damps) class StrategyOnePlusLambda(object): """ A CMA-ES strategy that uses the :math:`1 + \lambda` paradigme. :param parent: An iterable object that indicates where to start the evolution. The parent requires a fitness attribute. :param sigma: The initial standard deviation of the distribution. :param parameter: One or more parameter to pass to the strategy as described in the following table, optional. """ def __init__(self, parent, sigma, **kargs): self.parent = parent self.sigma = sigma self.dim = len(self.parent) self.C = numpy.identity(self.dim) self.A = numpy.identity(self.dim) self.pc = numpy.zeros(self.dim) self.computeParams(kargs) self.psucc = self.ptarg def computeParams(self, params): """Computes the parameters depending on :math:`\lambda`. It needs to be called again if :math:`\lambda` changes during evolution. :param params: A dictionary of the manually set parameters. """ # Selection : self.lambda_ = params.get("lambda_", 1) # Step size control : self.d = params.get("d", 1.0 + self.dim/(2.0*self.lambda_)) self.ptarg = params.get("ptarg", 1.0/(5+sqrt(self.lambda_)/2.0)) self.cp = params.get("cp", self.ptarg*self.lambda_/(2+self.ptarg*self.lambda_)) # Covariance matrix adaptation self.cc = params.get("cc", 2.0/(self.dim+2.0)) self.ccov = params.get("ccov", 2.0/(self.dim**2 + 6.0)) self.pthresh = params.get("pthresh", 0.44) def generate(self, ind_init): """Generate a population of :math:`\lambda` individuals of type *ind_init* from the current strategy. :param ind_init: A function object that is able to initialize an individual from a list. :returns: A list of individuals. """ # self.y = numpy.dot(self.A, numpy.random.standard_normal(self.dim)) arz = numpy.random.standard_normal((self.lambda_, self.dim)) arz = self.parent + self.sigma * numpy.dot(arz, self.A.T) return map(ind_init, arz) def update(self, population): """Update the current covariance matrix strategy from the *population*. :param population: A list of individuals from which to update the parameters. """ population.sort(key=lambda ind: ind.fitness, reverse=True) lambda_succ = sum(self.parent.fitness <= ind.fitness for ind in population) p_succ = float(lambda_succ) / self.lambda_ self.psucc = (1-self.cp)*self.psucc + self.cp*p_succ if self.parent.fitness <= population[0].fitness: x_step = (population[0] - numpy.array(self.parent)) / self.sigma self.parent = copy.deepcopy(population[0]) if self.psucc < self.pthresh: self.pc = (1 - self.cc)*self.pc + sqrt(self.cc * (2 - self.cc)) * x_step self.C = (1-self.ccov)*self.C + self.ccov * numpy.outer(self.pc, self.pc) else: self.pc = (1 - self.cc)*self.pc self.C = (1-self.ccov)*self.C + self.ccov * (numpy.outer(self.pc, self.pc) + self.cc*(2-self.cc)*self.C) self.sigma = self.sigma * exp(1.0/self.d * (self.psucc - self.ptarg)/(1.0-self.ptarg)) # We use Cholesky since for now we have no use of eigen decomposition # Basically, Cholesky returns a matrix A as C = A*A.T # Eigen decomposition returns two matrix B and D^2 as C = B*D^2*B.T = B*D*D*B.T # So A == B*D # To compute the new individual we need to multiply each vector z by A # as y = centroid + sigma * A*z # So the Cholesky is more straightforward as we don't need to compute # the squareroot of D^2, and multiply B and D in order to get A, we directly get A. # This can't be done (without cost) with the standard CMA-ES as the eigen decomposition is used # to compute covariance matrix inverse in the step-size evolutionary path computation. self.A = numpy.linalg.cholesky(self.C)