#include #include #include "triton/codegen/analysis/allocation.h" #include "triton/codegen/analysis/liveness.h" #include "triton/codegen/transform/cts.h" #include "triton/ir/basic_block.h" #include "triton/ir/type.h" #include "triton/ir/value.h" #include "triton/ir/function.h" #include "triton/ir/instructions.h" #include "triton/ir/utils.h" namespace triton{ namespace codegen{ namespace analysis{ void allocation::run(ir::module &mod) { using std::max; using std::min; typedef std::multimap triples_map_type; std::vector I; for(auto x: liveness_->intervals()) I.push_back(x.first); std::vector J = I; triples_map_type H; H.insert({0, segment{0, INT_MAX}}); std::vector V; std::map starts; while(!J.empty()){ auto h_it = H.begin(); unsigned w = h_it->first; segment xh = h_it->second; H.erase(h_it); auto j_it = std::find_if(J.begin(), J.end(), [&](buffer_t* JJ){ segment xj = liveness_->get_interval(JJ); bool res = xj.intersect(xh); for(auto val: H) res = res && !val.second.intersect(xj); return res; }); if(j_it != J.end()){ unsigned size = (*j_it)->size; segment xj = liveness_->get_interval(*j_it); starts[*j_it] = w; H.insert({w + size, segment{max(xh.start, xj.start), min(xh.end, xj.end)}}); if(xh.start < xj.start) H.insert({w, segment{xh.start, xj.end}}); if(xj.end < xh.end) H.insert({w, segment{xj.start, xh.end}}); V.push_back(*j_it); J.erase(j_it); } } // Build interference graph std::map> interferences; for(buffer_t* x: V) for(buffer_t* y: V){ if(x->id == y->id) continue; unsigned X0 = starts[x], Y0 = starts[y]; unsigned NX = x->size; unsigned NY = y->size; segment XS = {X0, X0 + NX}; segment YS = {Y0, Y0 + NY}; if(liveness_->get_interval(x).intersect(liveness_->get_interval(y)) && XS.intersect(YS)) interferences[x].insert(y); } // Initialize colors std::map colors; for(buffer_t* X: V) colors[X] = (X->id==V[0]->id)?0:-1; // First-fit graph coloring std::vector available(V.size()); for(buffer_t* x: V){ // Non-neighboring colors are available std::fill(available.begin(), available.end(), true); for(buffer_t* Y: interferences[x]){ int color = colors[Y]; if(color >= 0) available[color] = false; } // Assigns first available color auto It = std::find(available.begin(), available.end(), true); colors[x] = std::distance(available.begin(), It); } // Finalize allocation for(buffer_t* x: V){ unsigned Adj = 0; for(buffer_t* y: interferences[x]) Adj = std::max(Adj, starts[y] + y->size); // create offsets for(ir::value *v: liveness_->get_values(x)){ offsets_[v] = starts[x] + colors[x] * Adj; if(liveness_->has_double(v)){ auto info = liveness_->get_double(v); offsets_[info.latch] = offsets_[v] + x->size / 2; } } } // Save maximum size of induced memory space allocated_size_ = 0; for(buffer_t* x: V) allocated_size_ = std::max(allocated_size_, starts[x] + x->size); } } } }