.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "getting-started/tutorials/05-layer-norm.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_getting-started_tutorials_05-layer-norm.py: Layer Normalization ==================== .. GENERATED FROM PYTHON SOURCE LINES 5-252 .. image:: /getting-started/tutorials/images/sphx_glr_05-layer-norm_001.png :alt: 05 layer norm :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none layer-norm-backward: N Triton Torch Apex 0 1024.0 307.200008 98.303995 303.407414 1 1536.0 351.085717 134.050910 341.333333 2 2048.0 423.724127 161.684218 334.367350 3 2560.0 465.454542 181.238943 328.556154 4 3072.0 511.999982 191.999993 320.556515 5 3584.0 551.384634 207.768111 310.527060 6 4096.0 568.231237 220.412561 298.796351 7 4608.0 498.162157 232.825259 287.251954 8 5120.0 527.381977 242.845844 285.104413 9 5632.0 540.671974 243.107920 290.683877 10 6144.0 544.118087 248.242431 286.322318 11 6656.0 532.479975 256.000009 285.767438 12 7168.0 507.469040 260.654538 286.242939 13 7680.0 479.999983 262.190612 274.694491 14 8192.0 463.698115 266.767970 284.939124 15 8704.0 416.958106 267.472468 284.212242 16 9216.0 429.483477 272.059034 288.751954 17 9728.0 437.213490 280.615388 289.667485 18 10240.0 449.287041 286.433562 287.438599 19 10752.0 428.651173 247.172406 290.922209 20 11264.0 429.104745 245.536784 286.980888 21 11776.0 423.724129 249.667843 288.981596 22 12288.0 420.102570 254.673582 294.323369 23 12800.0 414.574901 253.256381 289.538159 24 13312.0 411.711355 252.559690 289.916513 25 13824.0 405.098897 257.390218 292.056329 26 14336.0 395.021816 254.297107 286.719986 27 14848.0 385.662341 257.665934 289.246765 28 15360.0 373.874218 257.790220 287.102804 29 15872.0 369.832994 261.806182 289.899545 | .. code-block:: default import torch import triton.language as tl import triton # Forward Pass @triton.jit def _layer_norm_fwd_fused(X, Y, W, B, M, V, stride, N, eps, **META): BLOCK_SIZE = META['BLOCK_SIZE'] # position of elements processed by this program row = tl.program_id(0) cols = tl.arange(0, BLOCK_SIZE) mask = cols < N # offset data pointers to start at the row of interest X += row * stride Y += row * stride # load data and cast to float32 x = tl.load(X + cols, mask=mask, other=0).to(tl.float32) # compute mean mean = tl.sum(x, axis=0) / N # compute std xmean = tl.where(mask, x - mean, 0.) var = tl.sum(xmean * xmean, axis=0) / N rstd = 1 / tl.sqrt(var + eps) xhat = xmean*rstd # write-back mean/rstd tl.store(M + row, mean) tl.store(V + row, rstd) # multiply by weight and add bias w = tl.load(W + cols, mask=mask) b = tl.load(B + cols, mask=mask) y = xhat * w + b # write-back tl.store(Y + cols, y, mask=mask) # Backward pass (DX + partial DW + partial DB) @triton.jit def _layer_norm_bwd_dx_fused(DX, DY, DW, DB, X, W, B, M, V, Lock, stride, N, eps, **META): GROUP_SIZE_M = META['GROUP_SIZE_M'] BLOCK_SIZE_N = META['BLOCK_SIZE_N'] # position of elements processed by this program row = tl.program_id(0) cols = tl.arange(0, BLOCK_SIZE_N) mask = cols < N # offset data pointers to start at the row of interest X += row * stride DY += row * stride DX += row * stride # offset locks and weight/bias gradient pointer # each kernel instance accumulates partial sums for # DW and DB into one of GROUP_SIZE_M independent buffers # these buffers stay in the L2, which allow this kernel # to be fast lock_id = row % GROUP_SIZE_M Lock += lock_id Count = Lock + GROUP_SIZE_M DW = DW + lock_id*N + cols DB = DB + lock_id*N + cols # load data to SRAM x = tl.load(X + cols, mask=mask, other=0).to(tl.float32) dy = tl.load(DY + cols, mask=mask, other=0).to(tl.float32) w = tl.load(W + cols, mask=mask).to(tl.float32) mean = tl.load(M + row) rstd = tl.load(V + row) # compute dx xhat = (x - mean)*rstd wdy = w * dy xhat = tl.where(mask, xhat, 0.) wdy = tl.where(mask, wdy , 0.) mean1 = tl.sum(xhat * wdy, axis=0) / N mean2 = tl.sum(wdy, axis=0) / N dx = (wdy - (xhat*mean1 + mean2))*rstd # write-back dx tl.store(DX + cols, dx, mask=mask) # accumulate partial sums for dw/db partial_dw = (dy*xhat).to(w.dtype) partial_db = (dy).to(w.dtype) while tl.atomic_cas(Lock, 0, 1) == 1: pass count = tl.load(Count) # first store doesn't accumulate if count == 0: tl.atomic_xchg(Count, 1) else: partial_dw += tl.load(DW, mask=mask) partial_db += tl.load(DB, mask=mask) tl.store(DW, partial_dw, mask=mask) tl.store(DB, partial_db, mask=mask) # release lock tl.atomic_xchg(Lock, 0) # Backward pass (total DW + total DB) @triton.jit def _layer_norm_bwd_dwdb(DW, DB, FINAL_DW, FINAL_DB, M, N, **meta): pid = tl.program_id(0) BLOCK_SIZE_M = meta['BLOCK_SIZE_M'] BLOCK_SIZE_N = meta['BLOCK_SIZE_N'] cols = pid*BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) dw = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) db = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) for i in range(0, M, BLOCK_SIZE_M): rows = i + tl.arange(0, meta['BLOCK_SIZE_M']) mask = (rows[:, None] < M) & (cols[None, :] < N) offs = rows[:, None]*N + cols[None, :] dw += tl.load(DW + offs, mask=mask, other=0.) db += tl.load(DB + offs, mask=mask, other=0.) sum_dw = tl.sum(dw, axis=0) sum_db = tl.sum(db, axis=0) tl.store(FINAL_DW + cols, sum_dw, mask=cols BLOCK_SIZE: raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.") # heuristics for number of warps num_warps = min(max(BLOCK_SIZE // 256, 1), 8) # enqueue kernel _layer_norm_fwd_fused[(M,)](x_arg, y, weight, bias, mean, rstd, x_arg.stride(0), N, eps, BLOCK_SIZE=BLOCK_SIZE, num_warps=num_warps) ctx.save_for_backward(x, weight, bias, mean, rstd) ctx.BLOCK_SIZE = BLOCK_SIZE ctx.num_warps = num_warps ctx.eps = eps return y @staticmethod def backward(ctx, dy): x, w, b, m, v = ctx.saved_tensors # heuristics for amount of parallel reduction stream for DG/DB N = w.shape[0] GROUP_SIZE_M = 64 if N <= 8192: GROUP_SIZE_M = 96 if N <= 4096: GROUP_SIZE_M = 128 if N <= 1024: GROUP_SIZE_M = 256 # allocate output locks = torch.zeros(2*GROUP_SIZE_M, dtype=torch.int32, device='cuda') _dw = torch.empty((GROUP_SIZE_M, w.shape[0]), dtype=x.dtype, device=w.device) _db = torch.empty((GROUP_SIZE_M, w.shape[0]), dtype=x.dtype, device=w.device) dw = torch.empty((w.shape[0],), dtype=w.dtype, device=w.device) db = torch.empty((w.shape[0],), dtype=w.dtype, device=w.device) dx = torch.empty_like(dy) # enqueue kernel using forward pass heuristics # also compute partial sums for DW and DB x_arg = x.reshape(-1, x.shape[-1]) M, N = x_arg.shape _layer_norm_bwd_dx_fused[(M,)](dx, dy, _dw, _db, x, w, b, m, v, locks, x_arg.stride(0), N, ctx.eps, BLOCK_SIZE_N=ctx.BLOCK_SIZE, GROUP_SIZE_M=GROUP_SIZE_M, num_warps=ctx.num_warps) grid = lambda meta: [triton.cdiv(N, meta['BLOCK_SIZE_N'])] # accumulate partial sums in separate kernel _layer_norm_bwd_dwdb[grid](_dw, _db, dw, db, GROUP_SIZE_M, N, BLOCK_SIZE_M = 32, BLOCK_SIZE_N = 128) return dx, None, dw, db, None layer_norm = LayerNorm.apply def test_layer_norm(M, N, dtype, eps=1e-5, device='cuda'): # create data x_shape = (M, N) w_shape = (x_shape[-1], ) weight = torch.rand(w_shape, dtype=dtype, device='cuda', requires_grad=True) bias = torch.rand(w_shape, dtype=dtype, device='cuda', requires_grad=True) x = -2.3 + 0.5*torch.randn(x_shape, dtype=dtype, device='cuda') dy = .1*torch.randn_like(x) x.requires_grad_(True) # forward pass y_tri = layer_norm(x, w_shape, weight, bias, eps) y_ref = torch.nn.functional.layer_norm(x, w_shape, weight, bias, eps).to(dtype) # backward pass (triton) y_tri.backward(dy, retain_graph=True) dx_tri, dw_tri, db_tri = [_.grad.clone() for _ in [x, weight, bias]] x.grad, weight.grad, bias.grad = None, None, None # backward pass (torch) y_ref.backward(dy, retain_graph=True) dx_ref, dw_ref, db_ref = [_.grad.clone() for _ in [x, weight, bias]] # compare triton.testing.assert_almost_equal(y_tri, y_ref) triton.testing.assert_almost_equal(dx_tri, dx_ref) triton.testing.assert_almost_equal(db_tri, db_ref, decimal=1) triton.testing.assert_almost_equal(dw_tri, dw_ref, decimal=1) @triton.testing.perf_report( triton.testing.Benchmark( x_names=['N'], x_vals=[512 * i for i in range(2, 32)], line_arg='provider', line_vals=['triton', 'torch', 'apex'], line_names=['Triton', 'Torch', 'Apex'], styles=[('blue', '-'), ('green', '-'), ('orange', '-')], ylabel='GB/s', plot_name='layer-norm-backward', args={'M': 4096, 'dtype': torch.float16, 'mode': 'backward'} ) ) def bench_layer_norm(M, N, dtype, provider, mode='backward',eps=1e-5, device='cuda'): # create data x_shape = (M, N) w_shape = (x_shape[-1], ) weight = torch.rand(w_shape, dtype=dtype, device='cuda', requires_grad=True) bias = torch.rand(w_shape, dtype=dtype, device='cuda', requires_grad=True) x = -2.3 + 0.5*torch.randn(x_shape, dtype=dtype, device='cuda') dy = .1*torch.randn_like(x) x.requires_grad_(True) # utility functions if provider == 'triton': y_fwd = lambda: layer_norm(x, w_shape, weight, bias, eps) if provider == 'torch': y_fwd = lambda: torch.nn.functional.layer_norm(x, w_shape, weight, bias, eps) if provider == 'apex': import apex apex_layer_norm = apex.normalization.FusedLayerNorm(w_shape).to(x.device).to(x.dtype) y_fwd = lambda: apex_layer_norm(x) # forward pass if mode == 'forward': gbps = lambda ms: 2*x.numel()*x.element_size()/ms*1e-6 ms, min_ms, max_ms = triton.testing.do_bench(y_fwd, rep=500) # backward pass if mode == 'backward': gbps = lambda ms: 3*x.numel()*x.element_size()/ms*1e-6 y = y_fwd() ms, min_ms, max_ms = triton.testing.do_bench(lambda: y.backward(dy, retain_graph=True), grad_to_none=[x], rep=500) return gbps(ms), gbps(max_ms), gbps(min_ms) bench_layer_norm.run(save_path='.', print_data=True) .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 2 minutes 13.380 seconds) .. _sphx_glr_download_getting-started_tutorials_05-layer-norm.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: 05-layer-norm.py <05-layer-norm.py>` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: 05-layer-norm.ipynb <05-layer-norm.ipynb>` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_