import itertools import torch import triton as tt import pytest def sparsify_tensor(x, mask, block): ret = torch.empty((x.size(0), mask.sum(), block, block), dtype=x.dtype, device=x.device) for idx, (h, i, j) in enumerate(zip(*mask.nonzero(as_tuple=True))): ret[:, idx, :, :] = x[:, h, i*block: (i+1)*block, j*block: (j+1)*block] return ret def mask_tensor(x, mask, block, value = 0): ret = x.clone() for h, i, j in zip(*(mask == 0).nonzero(as_tuple=True)): ret[:, h, i*block: (i+1)*block, j*block: (j+1)*block] = value return ret @pytest.mark.parametrize("MODE, TRANS_A, TRANS_B, BLOCK", [ (mode, at, bt, block) for mode in ['sdd', 'dsd', 'dds']\ for at in [False, True]\ for bt in [False, True]\ for block in [16, 32, 64] ] ) def test_matmul(MODE, TRANS_A, TRANS_B, BLOCK, DTYPE = torch.float16, Z = 3, H = 2, M = 128, N = 256, K = 384): # set seed torch.random.manual_seed(0) # create inputs a = torch.randn((Z, H, K, M) if TRANS_A else (Z, H, M, K), dtype=DTYPE, device='cuda') b = torch.randn((Z, H, N, K) if TRANS_B else (Z, H, K, N), dtype=DTYPE, device='cuda') shape = {'sdd': (M, N), 'dsd': (a.shape[2], a.shape[3]), 'dds': (b.shape[2], b.shape[3])}[MODE] layout = torch.randint(2, (H, shape[0]//BLOCK, shape[1]//BLOCK)) # triton result op = tt.ops.blocksparse.matmul(layout, BLOCK, MODE, trans_a=TRANS_A, trans_b=TRANS_B) ra = sparsify_tensor(a, layout, BLOCK) if MODE == 'dsd' else a rb = sparsify_tensor(b, layout, BLOCK) if MODE == 'dds' else b rc = op(ra, rb) # torch result ta = mask_tensor(a, layout, BLOCK) if MODE == 'dsd' else a tb = mask_tensor(b, layout, BLOCK) if MODE == 'dds' else b ta = ta.transpose(2, 3) if TRANS_A else ta tb = tb.transpose(2, 3) if TRANS_B else tb tc = torch.matmul(ta, tb) tc = mask_tensor(tc, layout, BLOCK) if MODE == 'sdd' else tc tc = sparsify_tensor(tc, layout, BLOCK) if MODE == 'sdd' else tc # compare rtol, atol = {torch.float32: (1e-4, 1e-5), torch.float16: (1e-2, 1e-3)}[DTYPE] assert torch.allclose(rc, tc, rtol=rtol, atol=atol) @pytest.mark.parametrize("BLOCK, WIDTH", [ (block, width) for block in [16]\ for width in [256, 576] ] ) def test_softmax(BLOCK, WIDTH, DTYPE = torch.float16): # set seed torch.random.manual_seed(0) Z, H, M, N = 2, 4, WIDTH, WIDTH scale = 0.4 # create inputs layout = torch.randint(2, (H, M//BLOCK, N//BLOCK)) x = torch.randn((Z, H, M, N), dtype=DTYPE, requires_grad=True, device='cuda') at_mask = torch.randint(low=0, high=2, size=(N, N), \ dtype=torch.bool, requires_grad=False, device='cuda') kp_mask = torch.randint(low=0, high=2, size=(Z, N), \ dtype=DTYPE, requires_grad=False, device='cuda') kp_mask[kp_mask==1.] = float('-inf') # triton result op = tt.ops.blocksparse.softmax(layout, BLOCK) tx = sparsify_tensor(x, layout, BLOCK) ty = op(tx, scale=scale, key_padding_mask=kp_mask, key_padding_mask_mode='add', attn_mask=at_mask.to(DTYPE), attn_mask_mode='mul') # torch result rx = mask_tensor(x, layout, BLOCK, value=float('-inf')) if at_mask is not None: # broadcast at_mask to the same shape as rx M = at_mask[None, None, :, :] + torch.zeros_like(rx) rx[M == 0] = float('-inf') if kp_mask is not None: rx += kp_mask[:, None, None, :] ry = torch.softmax(rx*scale, -1) ry = sparsify_tensor(ry, layout, BLOCK) # compare rtol, atol = {torch.float32: (1e-4, 1e-5), torch.float16: (1e-2, 1e-3)}[DTYPE] assert torch.allclose(ry , ty, rtol=rtol, atol=atol)