""" Layer Normalization ==================== """ import torch import triton import triton.language as tl try: # This is https://github.com/NVIDIA/apex, NOT the apex on PyPi, so it # should not be added to extras_require in setup.py. import apex HAS_APEX = True except ModuleNotFoundError: HAS_APEX = False @triton.jit def _layer_norm_fwd_fused( Out, A, Weight, Bias, Mean, Rstd, stride, N, eps, BLOCK_SIZE: tl.constexpr, ): # position of elements processed by this program row = tl.program_id(0) Out += row * stride A += row * stride # compute mean mean = 0 _mean = tl.zeros([BLOCK_SIZE], dtype=tl.float32) for off in range(0, N, BLOCK_SIZE): cols = off + tl.arange(0, BLOCK_SIZE) a = tl.load(A + cols, mask=cols < N, other=0., eviction_policy="evict_last").to(tl.float32) _mean += a mean = tl.sum(_mean, axis=0) / N # compute variance _var = tl.zeros([BLOCK_SIZE], dtype=tl.float32) for off in range(0, N, BLOCK_SIZE): cols = off + tl.arange(0, BLOCK_SIZE) a = tl.load(A + cols, mask=cols < N, other=0., eviction_policy="evict_last").to(tl.float32) a = tl.where(cols < N, a - mean, 0.) _var += a * a var = tl.sum(_var, axis=0) / N rstd = 1 / tl.sqrt(var + eps) # write-back mean/rstd tl.store(Mean + row, mean) tl.store(Rstd + row, rstd) # multiply by weight and add bias for off in range(0, N, BLOCK_SIZE): cols = off + tl.arange(0, BLOCK_SIZE) mask = cols < N weight = tl.load(Weight + cols, mask=mask) bias = tl.load(Bias + cols, mask=mask) a = tl.load(A + cols, mask=mask, other=0., eviction_policy="evict_first").to(tl.float32) a_hat = (a - mean) * rstd out = a_hat * weight + bias # # write-back tl.store(Out + cols, out, mask=mask) # Backward pass (DA + partial DW + partial DB) @triton.jit def _layer_norm_bwd_dx_fused( _DA, _DOut, _A, Weight, Mean, Rstd, stride, NumRows, NumCols, eps, BLOCK_SIZE_N: tl.constexpr, ): # position of elements processed by this program pid = tl.program_id(0) row = pid A = _A + row * stride DOut = _DOut + row * stride DA = _DA + row * stride mean = tl.load(Mean + row) rstd = tl.load(Rstd + row) # load data to SRAM _mean1 = tl.zeros([BLOCK_SIZE_N], dtype=tl.float32) _mean2 = tl.zeros([BLOCK_SIZE_N], dtype=tl.float32) for off in range(0, NumCols, BLOCK_SIZE_N): cols = off + tl.arange(0, BLOCK_SIZE_N) mask = cols < NumCols a = tl.load(A + cols, mask=mask, other=0).to(tl.float32) dout = tl.load(DOut + cols, mask=mask, other=0).to(tl.float32) weight = tl.load(Weight + cols, mask=mask, other=0).to(tl.float32) a_hat = (a - mean) * rstd wdout = weight * dout _mean1 += a_hat * wdout _mean2 += wdout mean1 = tl.sum(_mean1, axis=0) / NumCols mean2 = 0. mean2 = tl.sum(_mean2, axis=0) / NumCols for off in range(0, NumCols, BLOCK_SIZE_N): cols = off + tl.arange(0, BLOCK_SIZE_N) mask = cols < NumCols a = tl.load(A + cols, mask=mask, other=0).to(tl.float32) dout = tl.load(DOut + cols, mask=mask, other=0).to(tl.float32) weight = tl.load(Weight + cols, mask=mask, other=0).to(tl.float32) a_hat = (a - mean) * rstd wdout = weight * dout da = (wdout - (a_hat * mean1 + mean2)) * rstd # write-back dx tl.store(DA + cols, da, mask=mask) # Backward pass (total DW + total DB) @triton.jit def _layer_norm_bwd_dwdb( A, DOut, Mean, Var, DW, DB, M, N, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, ): pid = tl.program_id(0) cols = pid * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) dw = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) db = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) UNROLL: tl.constexpr = 4 for i in range(0, M, BLOCK_SIZE_M * UNROLL): for j in range(UNROLL): rows = i + j * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) mask = (rows[:, None] < M) & (cols[None, :] < N) offs = rows[:, None] * N + cols[None, :] a = tl.load(A + offs, mask=mask, other=0.).to(tl.float32) dout = tl.load(DOut + offs, mask=mask, other=0.).to(tl.float32) mean = tl.load(Mean + rows, mask=rows < M, other=0.) rstd = tl.load(Var + rows, mask=rows < M, other=0.) a_hat = (a - mean[:, None]) * rstd[:, None] dw += dout * a_hat db += dout sum_dw = tl.sum(dw, axis=0) sum_db = tl.sum(db, axis=0) tl.store(DW + cols, sum_dw, mask=cols < N) tl.store(DB + cols, sum_db, mask=cols < N) class LayerNorm(torch.autograd.Function): @staticmethod def forward(ctx, a, normalized_shape, weight, bias, eps): # allocate output out = torch.empty_like(a) # reshape input data into 2D tensor a_arg = a.reshape(-1, a.shape[-1]) M, N = a_arg.shape mean = torch.empty((M,), dtype=torch.float32, device="cuda") rstd = torch.empty((M,), dtype=torch.float32, device="cuda") # Less than 64KB per feature: enqueue fused kernel MAX_FUSED_SIZE = 65536 // a.element_size() BLOCK_SIZE = min(MAX_FUSED_SIZE, triton.next_power_of_2(N)) BLOCK_SIZE = max(BLOCK_SIZE, 128) BLOCK_SIZE = min(BLOCK_SIZE, 4096) # heuristics for number of warps num_warps = min(max(BLOCK_SIZE // 256, 1), 8) _layer_norm_fwd_fused[(M,)]( out, a_arg, weight, bias, mean, rstd, a_arg.stride(0), N, eps, BLOCK_SIZE=BLOCK_SIZE, num_warps=num_warps, ) ctx.save_for_backward( a, weight, bias, mean, rstd, ) ctx.BLOCK_SIZE = BLOCK_SIZE ctx.num_warps = num_warps ctx.eps = eps if hasattr(bias, "config"): assert bias.config.grad_scale_name == weight.config.grad_scale_name grad_scale_name = bias.config.grad_scale_name else: grad_scale_name = None ctx.grad_scale_gain_bias_name = grad_scale_name return out @staticmethod def backward(ctx, dout): assert dout.is_contiguous() a, weight, bias, mean, var = ctx.saved_tensors # heuristics for amount of parallel reduction stream for DG/DB N = weight.shape[0] # allocate output da = torch.empty_like(dout) # enqueue kernel using forward pass heuristics # also compute partial sums for DW and DB x_arg = a.reshape(-1, a.shape[-1]) M, N = x_arg.shape dweight = torch.empty((weight.shape[0],), dtype=weight.dtype, device=weight.device) dbias = torch.empty((weight.shape[0],), dtype=weight.dtype, device=weight.device) _layer_norm_bwd_dx_fused[(M,)]( da, dout, a, weight, mean, var, x_arg.stride(0), M, N, ctx.eps, BLOCK_SIZE_N=ctx.BLOCK_SIZE, num_warps=ctx.num_warps, ) if N > 10240: BLOCK_SIZE_N = 128 BLOCK_SIZE_M = 32 num_warps = 4 else: # maximize occupancy for small N BLOCK_SIZE_N = 16 BLOCK_SIZE_M = 16 num_warps = 8 grid = lambda meta: [triton.cdiv(N, meta["BLOCK_SIZE_N"])] _layer_norm_bwd_dwdb[grid]( a, dout, mean, var, dweight, dbias, M, N, BLOCK_SIZE_M=BLOCK_SIZE_M, BLOCK_SIZE_N=BLOCK_SIZE_N, num_warps=num_warps ) return (da, None, dweight, dbias, None) def layer_norm(a, normalized_shape, weight, bias, eps): return LayerNorm.apply(a, normalized_shape, weight, bias, eps) def test_layer_norm(M, N, dtype, eps=1e-5, device='cuda'): torch.manual_seed(0) # create data x_shape = (M, N) w_shape = (x_shape[-1], ) weight = torch.rand(w_shape, dtype=dtype, device='cuda', requires_grad=True) bias = torch.rand(w_shape, dtype=dtype, device='cuda', requires_grad=True) x = -2.3 + 0.5 * torch.randn(x_shape, dtype=dtype, device='cuda') dy = .1 * torch.randn_like(x) x.requires_grad_(True) # forward pass y_tri = layer_norm(x, w_shape, weight, bias, eps) y_ref = torch.nn.functional.layer_norm(x, w_shape, weight, bias, eps).to(dtype) # backward pass (triton) y_tri.backward(dy, retain_graph=True) dx_tri, dw_tri, db_tri = [_.grad.clone() for _ in [x, weight, bias]] x.grad, weight.grad, bias.grad = None, None, None # backward pass (torch) y_ref.backward(dy, retain_graph=True) dx_ref, dw_ref, db_ref = [_.grad.clone() for _ in [x, weight, bias]] # compare triton.testing.assert_almost_equal(y_tri, y_ref) triton.testing.assert_almost_equal(dx_tri, dx_ref) triton.testing.assert_almost_equal(db_tri, db_ref, decimal=1) triton.testing.assert_almost_equal(dw_tri, dw_ref, decimal=1) @triton.testing.perf_report( triton.testing.Benchmark( x_names=['N'], x_vals=[512 * i for i in range(2, 32)], line_arg='provider', line_vals=['triton', 'torch'] + (['apex'] if HAS_APEX else []), line_names=['Triton', 'Torch'] + (['Apex'] if HAS_APEX else []), styles=[('blue', '-'), ('green', '-'), ('orange', '-')], ylabel='GB/s', plot_name='layer-norm', args={'M': 4096, 'dtype': torch.float16, 'mode': 'forward'} ) ) def bench_layer_norm(M, N, dtype, provider, mode, eps=1e-5, device='cuda'): # create data x_shape = (M, N) w_shape = (x_shape[-1], ) weight = torch.rand(w_shape, dtype=dtype, device='cuda', requires_grad=True) bias = torch.rand(w_shape, dtype=dtype, device='cuda', requires_grad=True) x = -2.3 + 0.5 * torch.randn(x_shape, dtype=dtype, device='cuda') dy = .1 * torch.randn_like(x) x.requires_grad_(True) # utility functions if provider == 'triton': y_fwd = lambda: layer_norm(x, w_shape, weight, bias, eps) if provider == 'torch': y_fwd = lambda: torch.nn.functional.layer_norm(x, w_shape, weight, bias, eps) if provider == 'apex': apex_layer_norm = apex.normalization.FusedLayerNorm(w_shape).to(x.device).to(x.dtype) y_fwd = lambda: apex_layer_norm(x) # forward pass if mode == 'forward': gbps = lambda ms: 2 * x.numel() * x.element_size() / ms * 1e-6 ms, min_ms, max_ms = triton.testing.do_bench(y_fwd, rep=500) # backward pass if mode == 'backward': gbps = lambda ms: 3 * x.numel() * x.element_size() / ms * 1e-6 y = y_fwd() ms, min_ms, max_ms = triton.testing.do_bench(lambda: y.backward(dy, retain_graph=True), grad_to_none=[x], rep=500) return gbps(ms), gbps(max_ms), gbps(min_ms) # test_layer_norm(1151, 8192, torch.float16) bench_layer_norm.run(save_path='.', print_data=True)