#include "triton/driver/backend.h" #include "triton/driver/stream.h" #include #include #include #include #include #include "triton/driver/backend.h" #include "triton/driver/stream.h" #include "triton/tools/bench.hpp" #include "triton/external/half.hpp" #include "triton/runtime/function.h" #include #include #include "triton/runtime/function.h" namespace drv = triton::driver; namespace rt = triton::runtime; namespace src { const char *dot = R"( #define STM 8 #define STN 8 __global__ void dot(TYPE * A __noalias __readonly __aligned(16), TYPE * B __noalias __readonly __aligned(16), TYPE * C __noalias __aligned(16), float alpha, int M __retune, int N __retune, int K __retune __multipleof(16), int lda __multipleof(8), int ldb __multipleof(8), int ldc __multipleof(8), int* locks) { // prologue int pid = get_program_id(0); int pidz = get_program_id(2); int gridm = (M + TM - 1) / TM; int gridn = (N + TN - 1) / TN; int width = STM*gridn; int stm = pid / width; int RSTM = min(gridm - stm*STM, STM); int stn = (pid % width) / (RSTM*STN); int RSTN = min(gridn - stn*STN, STN); int laneid = pid % (RSTM * RSTN); int lanem = laneid / RSTN; int lanen = laneid % RSTN; int pidm = stm*STM + lanem; int pidn = stn*STN + lanen; int rm[TM] = pidm * TM + 0 ... TM; int rn[TN] = pidn * TN + 0 ... TN; // reduction splitting K = K / TZ; int rk[TK] = pidz * K + 0 ... TK; // pointers to operands int offa[TM, TK] = rk[newaxis, :] * STRIDE_AK + rm[:, newaxis] * STRIDE_AM; int offb[TK, TN] = rk[:, newaxis] * STRIDE_BK + rn[newaxis, :] * STRIDE_BN; TYPE* pa[TM, TK] = A + offa; TYPE* pb[TK, TN] = B + offb; // prefetches operands bool checka[TM, TK] = rk[newaxis, :] < K; bool checkb[TK, TN] = rk[:, newaxis] < K; TYPE a[TM, TK] = checka ? *pa : 0; TYPE b[TK, TN] = checkb ? *pb : 0; pa += TK * STRIDE_AK; pb += TK * STRIDE_BK; // reduction loop float acc[TM, TN] = 0; for(int k = K; k > 0; k -= TK){ bool checka[TM, TK] = k > TK; bool checkb[TK, TN] = k > TK; acc += a @ b; a = *?(checka)pa; b = *?(checkb)pb; pa += TK * STRIDE_AK; pb += TK * STRIDE_BK; } acc = acc * alpha; TYPE c[TM, TN] = acc; // epilogue int rcm[TM] = pidm * TM + 0 ... TM; int rcn[TN] = pidn * TN + 0 ... TN; int offc[TM, TN] = rcm[:, newaxis] * ldc + rcn[newaxis, :]; TYPE* pc[TM, TN] = C + offc; bool checkc[TM, TN] = rcm[:, newaxis] < M && rcn[newaxis, :] < N; #if (TZ==1) *?(checkc) pc = c; #else // accumulate partial result using spin-locks int *plock = locks + rid; int *pcount = plock + get_num_programs(0) * get_num_programs(1); for(int repeat = 1; repeat == 1; repeat = atomic_cas(plock, 0, 1)); int count = *pcount; if(count == 0) *?(checkc) pc = c; else *?(checkc) pc = c + *?(checkc)pc; atomic_xchg(pcount, (count + 1) % TZ); atomic_xchg(plock, 0); #endif } )"; } enum dtype_t { FLOAT, HALF, DOUBLE }; template struct to_string; template<> struct to_string{ static constexpr const char* value = "half"; }; template<> struct to_string{ static constexpr const char* value = "float"; }; template<> struct to_string{ static constexpr const char* value = "double"; }; template float triton_dot(drv::context* context, drv::stream* stream, bool AT, bool BT, int32_t M, int32_t N, int32_t K){ std::string ty = to_string::value; size_t dt_nbytes = sizeof(T); drv::device* device = context->device(); int32_t lda = AT ? K : M; int32_t ldb = BT ? N : K; int32_t ldc = N; std::vector sa = { "1", "lda" }; std::vector sb = { "1", "ldb" }; // inputs auto dc = std::shared_ptr(drv::buffer::create(context, M*N*dt_nbytes)); auto da = std::shared_ptr(drv::buffer::create(context, M*K*dt_nbytes)); auto db = std::shared_ptr(drv::buffer::create(context, K*N*dt_nbytes)); auto dlocks = std::shared_ptr(drv::buffer::create(context, 1024*1024*2*4)); // initialize buffers std::vector hc(M*N); std::vector ha(M*K); std::vector hb(K*N); for(size_t i = 0; i < ha.size(); i++) ha[i] = (float)rand()/RAND_MAX; for(size_t i = 0; i < hb.size(); i++) hb[i] = (float)rand()/RAND_MAX; stream->write(&*da, true, 0, ha); stream->write(&*db, true, 0, hb); // macros rt::options_t opt; opt.defines["STRIDE_AK"] = AT? "1" : "lda"; opt.defines["STRIDE_AM"] = AT? "lda" : "1"; opt.defines["STRIDE_BK"] = BT? "ldb" : "1"; opt.defines["STRIDE_BN"] = BT? "1" : "ldb"; opt.defines["TYPE"] = ty; opt.defines["TM"] = "128"; opt.defines["TN"] = "128"; opt.defines["TK"] = "32" ; opt.defines["TZ"] = "1"; opt.num_warps = 4; // arguments std::stringstream oss; rt::add_arg(oss, *da->cu()); rt::add_arg(oss, *db->cu()); rt::add_arg(oss, *dc->cu()); rt::add_arg(oss, (float)1); rt::add_arg(oss, M); rt::add_arg(oss, N); rt::add_arg(oss, K); rt::add_arg(oss, lda); rt::add_arg(oss, ldb); rt::add_arg(oss, ldc); rt::add_arg(oss, *dlocks->cu()); // function rt::function function(src::dot, opt, device); // std::cout << function.get_kernels()[0].second->get_asm(rt::ASM_LLIR) << std::endl; // grid auto ceil = [](size_t x, size_t y) { return (x + y - 1) / y; }; auto grid = [ceil, M, N](const rt::options_t& x) { return rt::grid_t{ceil(M, x.D("TM"))* ceil(N, x.D("TN")), (size_t)x.D("TZ")}; }; // metrics auto tflops = [&](double nanosec) { return 2.*M*N*K / nanosec * 1e-3; }; double triton_ns = triton::tools::bench([&]() { function((void**)oss.str().data(), oss.str().size(), grid, stream);}, stream); return tflops(triton_ns); } float bench_dot(drv::context* context, drv::stream* stream, bool AT, bool BT, int32_t M, int32_t N, int32_t K, dtype_t dtype) { switch(dtype){ case HALF: return triton_dot(context, stream, AT, BT, M, N, K); case FLOAT: return triton_dot(context, stream, AT, BT, M, N, K); case DOUBLE: return triton_dot(context, stream, AT, BT, M, N, K); default: return 0; } } int main() { // initialize default compute device auto context = triton::driver::backend::contexts::get_default(); triton::driver::stream* stream = triton::driver::stream::create(context->backend()); // shapes to benchmark typedef std::tuple config_t; std::vector configs = { {false, false, 8192, 8192, 8192} }; // does the work bool AT, BT; int32_t M, N, K; dtype_t dtype = HALF; for(const auto& c: configs){ std::tie(AT, BT, M, N, K) = c; float tflops = bench_dot(context, stream, AT, BT, M, N, K, dtype); std::cout << "// " << AT << ", " << BT << ", " << M << ", " << N << ", " << K << ", " << tflops << std::endl; } }