#include #include #include "triton/runtime/jit.h" #include "triton/driver/backend.h" #include "triton/driver/stream.h" #include "triton/dnn/gemm.h" #include "triton/tools/bench.hpp" template void diff(const std::vector& x, const std::vector& y){ for(size_t i = 0; i < x.size(); i++) if(std::isnan(x[i]) || std::abs(x[i] - y[i])/std::max(x[i], y[i]) > 1e-4){ std::cout << i << " " << x[i] << " " << y[i] << std::endl; exit(EXIT_FAILURE); } std::cout << "Pass!" << std::endl; } double bench(triton::driver::context* context, bool AT, bool BT, int32_t M, int32_t N, int32_t K){ typedef float T; std::string ty = "fp16"; size_t dt_nbytes = sizeof(T); std::vector hc(M*N); std::vector ha(M*K); std::vector hb(K*N); srand(0); for(size_t i = 0; i < ha.size(); i++) ha[i] = (T)rand()/RAND_MAX; for(size_t i = 0; i < hb.size(); i++) hb[i] = (T)rand()/RAND_MAX; for(size_t i = 0; i < hc.size(); i++) hc[i] = 0; triton::driver::buffer* dc = triton::driver::buffer::create(context, hc.size()*dt_nbytes); triton::driver::buffer* da = triton::driver::buffer::create(context, ha.size()*dt_nbytes); triton::driver::buffer* db = triton::driver::buffer::create(context, hb.size()*dt_nbytes); triton::driver::stream* stream = triton::driver::stream::create(context); stream->write(da, true, 0, ha); stream->write(db, true, 0, hb); stream->write(dc, true, 0, hc); stream->synchronize(); triton::dnn::dot dot(M, N, K, AT, BT, ty, ty, 8, 8); double result = triton::tools::bench([&]() { dot.enqueue(stream, {da, db, dc}, triton::dnn::PARTIAL_TUNING);}, stream); delete dc; delete da; delete db; return result; } int main() { struct config_t{ bool AT; bool BT; int32_t M; int32_t N; int32_t K; }; // shapes to benchmark std::vector configs = { {false, false, 4096, 4096, 4096}, {false, true, 4096, 4096, 4096}, {true, false, 4096, 4096, 4096}, {true, true, 4096, 4096, 4096} }; // initialize default compute device auto context = triton::driver::backend::contexts::get_default(); // does the work for(config_t c: configs){ double tns = bench(context, c.AT, c.BT, c.M, c.N, c.K); double tflops = 2.*c.M*c.N*c.K / tns * 1e-3; std::cout << c.AT << ", " << c.BT << ", " << c.M << ", " << c.N << ", " << c.K << ", " << tflops << std::endl; } }