#include #include #include #include #include "isaac/kernels/mapped_object.h" #include "isaac/kernels/parse.h" #include "isaac/array.h" namespace isaac { namespace templates { //Generate inline std::string generate_arguments(std::string const & data_type, driver::Device const & device, std::vector const & mappings, expressions_tuple const & expressions) { std::string kwglobal = Global(device.backend()).get(); std::string _size_t = size_type(device); kernel_generation_stream stream; process(stream, PARENT_NODE_TYPE, { {"array0", kwglobal + " #scalartype* #pointer, " + _size_t + " #start,"}, {"host_scalar", "#scalartype #name,"}, {"array1", kwglobal + " " + data_type + "* #pointer, " + _size_t + " #start, " + _size_t + " #stride,"}, {"array2", kwglobal + " " + data_type + "* #pointer, " + _size_t + " #ld, " + _size_t + " #start, " + _size_t + " #stride, "}, {"tuple4", "#scalartype #name0, #scalartype #name1, #scalartype #name2, #scalartype #name3,"}} , expressions, mappings); std::string res = stream.str(); res.erase(res.rfind(',')); return res; } //Enqueue class set_arguments_functor : public traversal_functor { public: typedef void result_type; set_arguments_functor(symbolic_binder & binder, unsigned int & current_arg, driver::Kernel & kernel) : binder_(binder), current_arg_(current_arg), kernel_(kernel) { } void set_arguments(numeric_type dtype, values_holder const & scal) const { switch(dtype) { // case BOOL_TYPE: kernel_.setArg(current_arg_++, scal.bool8); break; case CHAR_TYPE: kernel_.setArg(current_arg_++, scal.int8); break; case UCHAR_TYPE: kernel_.setArg(current_arg_++, scal.uint8); break; case SHORT_TYPE: kernel_.setArg(current_arg_++, scal.int16); break; case USHORT_TYPE: kernel_.setArg(current_arg_++, scal.uint16); break; case INT_TYPE: kernel_.setArg(current_arg_++, scal.int32); break; case UINT_TYPE: kernel_.setArg(current_arg_++, scal.uint32); break; case LONG_TYPE: kernel_.setArg(current_arg_++, scal.int64); break; case ULONG_TYPE: kernel_.setArg(current_arg_++, scal.uint64); break; // case HALF_TYPE: kernel_.setArg(current_arg_++, scal.float16); break; case FLOAT_TYPE: kernel_.setArg(current_arg_++, scal.float32); break; case DOUBLE_TYPE: kernel_.setArg(current_arg_++, scal.float64); break; default: throw unknown_datatype(dtype); } } void set_arguments(array const * a) const { bool is_bound = binder_.bind(a->data()); if (is_bound) { kernel_.setArg(current_arg_++, a->data()); //scalar if(a->shape()[0]==1 && a->shape()[1]==1) { kernel_.setSizeArg(current_arg_++, a->start()[0]); } //array else if(a->shape()[0]==1 || a->shape()[1]==1) { kernel_.setSizeArg(current_arg_++, std::max(a->start()[0], a->start()[1])); kernel_.setSizeArg(current_arg_++, std::max(a->stride()[0], a->stride()[1])); } else { kernel_.setSizeArg(current_arg_++, a->ld()*a->stride()[1]); kernel_.setSizeArg(current_arg_++, a->start()[0] + a->start()[1]*a->ld()); kernel_.setSizeArg(current_arg_++, a->stride()[0]); } } } void set_arguments(repeat_infos const & i) const { kernel_.setSizeArg(current_arg_++, i.sub1); kernel_.setSizeArg(current_arg_++, i.sub2); kernel_.setSizeArg(current_arg_++, i.rep1); kernel_.setSizeArg(current_arg_++, i.rep2); } void set_arguments(lhs_rhs_element const & lhs_rhs) const { switch(lhs_rhs.type_family) { case VALUE_TYPE_FAMILY: return set_arguments(lhs_rhs.dtype, lhs_rhs.vscalar); case ARRAY_TYPE_FAMILY: return set_arguments(lhs_rhs.array); case INFOS_TYPE_FAMILY: return set_arguments(lhs_rhs.tuple); default: throw std::runtime_error("Unrecognized type family"); } } void operator()(isaac::array_expression const & array_expression, size_t root_idx, leaf_t leaf_t) const { array_expression::node const & root_node = array_expression.tree()[root_idx]; if (leaf_t==LHS_NODE_TYPE && root_node.lhs.type_family != COMPOSITE_OPERATOR_FAMILY) set_arguments(root_node.lhs); else if (leaf_t==RHS_NODE_TYPE && root_node.rhs.type_family != COMPOSITE_OPERATOR_FAMILY) set_arguments(root_node.rhs); } private: symbolic_binder & binder_; unsigned int & current_arg_; driver::Kernel & kernel_; }; inline void set_arguments(expressions_tuple const & expressions, driver::Kernel & kernel, unsigned int & current_arg, binding_policy_t binding_policy) { std::unique_ptr binder; if (binding_policy==BIND_TO_HANDLE) binder.reset(new bind_to_handle()); else binder.reset(new bind_all_unique()); for (const auto & elem : expressions.data()) traverse(*elem, (elem)->root(), set_arguments_functor(*binder, current_arg, kernel), true); } } }