#include #include "triton/dnn/conv.h" namespace triton{ namespace dnn{ conv::conv(int B, int NC, int D, int H, int W, int T, int R, int S, int NF, int stride_d, int stride_h, int stride_w, int pad_d, int pad_h, int pad_w, int upsample_d, int upsample_h, int upsample_w, std::string a_ty, std::string b_ty, type ty, bool bias) : base("conv"), NB_(B), NC_(NC), AD_(D), AH_(H), AW_(W), BD_(T), BH_(R), BW_(S), NF_(NF), stride_d_(stride_d), stride_h_(stride_h), stride_w_(stride_w), pad_d_(pad_d), pad_h_(pad_h), pad_w_(pad_w), upsample_d_(upsample_d), upsample_h_(upsample_h), upsample_w_(upsample_w), a_ty_(a_ty), b_ty_(b_ty), ty_(ty), bias_(bias) { CD_ = (AD_*upsample_d_ - BD_ + 1 + 2*pad_d_ + stride_d_ - 1)/stride_d_; CH_ = (AH_*upsample_h_ - BH_ + 1 + 2*pad_h_ + stride_h_ - 1)/stride_h_; CW_ = (AW_*upsample_w_ - BW_ + 1 + 2*pad_w_ + stride_w_ - 1)/stride_w_; // shapes shapes_a_ = {NB_, NC_, AD_, AH_, AW_}; shapes_b_ = {NC_, BD_, BH_, BW_, NF_}; shapes_c_ = {NB_, NF_, CD_, CH_, CW_}; // a layout - NCHW a_outer_idx_ = 0; a_inner_idx_ = 1; a_pix_idx_ = 2; // b layout - CRSK b_inner_idx_ = 0; b_pix_idx_ = 1; b_outer_idx_ = 4; // c layout - NKPQ c_outer_0_idx_ = 0; c_outer_1_idx_ = 1; c_pix_idx = 2; // swap a and c for bprop if(ty_ == BPROP){ std::swap(AD_, CD_); std::swap(AH_, CH_); std::swap(AW_, CW_); shapes_a_.swap(shapes_c_); std::swap(stride_d_, upsample_d_); std::swap(stride_h_, upsample_h_); std::swap(stride_w_, upsample_w_); pad_d_ = (CD_*stride_d_ - AD_*upsample_d_ + BD_ - 1 - stride_d_ + 1)/2; pad_h_ = (CH_*stride_h_ - AH_*upsample_h_ + BH_ - 1 - stride_h_ + 1)/2; pad_w_ = (CW_*stride_w_ - AW_*upsample_w_ + BW_ - 1 - stride_w_ + 1)/2; std::swap(b_inner_idx_, b_outer_idx_); std::swap(NC_, NF_); } // swap b and c for wgrad if(ty_ == WGRAD){ shapes_b_.swap(shapes_c_); std::swap(BD_, CD_); std::swap(BH_, CH_); std::swap(BW_, CW_); std::swap(a_outer_idx_, a_inner_idx_); std::swap(b_inner_idx_, c_outer_0_idx_); std::swap(b_outer_idx_, c_outer_1_idx_); std::swap(b_pix_idx_, c_pix_idx); } // leading dimensions set_ld(shapes_a_, ld_a_); set_ld(shapes_b_, ld_b_); set_ld(shapes_c_, ld_c_); // equivalent matmul bool upsampled_b = (ty_ == BPROP) && (upsample_d_ > 1 || upsample_h_ > 1 || upsample_w_ > 1); b_trans_ = ty_ != BPROP; b_lut_ = ty_ == WGRAD || upsampled_b; M_ = shapes_c_[c_outer_0_idx_]*shapes_c_[c_pix_idx]*shapes_c_[c_pix_idx+1]*shapes_c_[c_pix_idx+2]; N_ = shapes_c_[c_outer_1_idx_]; K_ = shapes_b_[b_inner_idx_]*BD_*BH_*BW_; // look-up table info if(ty_ == FPROP) Fs_ = shapes_b_[1]*shapes_b_[2]*shapes_b_[3]; else Fs_ = K_; TK_ = 8; Luts_ = (TK_ + Fs_ - 1) / Fs_ * Fs_; build_a_deltas(); if(b_lut_) build_b_deltas(); build_masks(); size_t cst_size = h_b_deltas_.size()*4; is_b_deltas_cst_ = cst_size < 65536; cst_size += h_a_deltas_.size()*4; is_a_deltas_cst = cst_size < 65536; cst_size += h_masks_.size()*4; is_mask_cst_ = cst_size < 65536; max_grid_0_ = 256; max_grid_1_ = 256; } // comparison for maps std::vector conv::retune_params() const { return {NB_, NC_, AD_, AH_, AW_, NF_, BD_, BH_, BW_, pad_d_, pad_h_, pad_w_, stride_d_, stride_h_, stride_w_, ty_, bias_}; } // clone base* conv::clone() const { return new conv(*this); } size_t conv::a_size() { return std::accumulate(shapes_a_.begin(), shapes_a_.end(), 1, std::multiplies()); } size_t conv::b_size() { return std::accumulate(shapes_b_.begin(), shapes_b_.end(), 1, std::multiplies()); } size_t conv::c_size() { return std::accumulate(shapes_c_.begin(), shapes_c_.end(), 1, std::multiplies()); } std::vector conv::c_shapes() { return shapes_c_; } std::tuple conv::unpack(int32_t ltrs, bool flip, int32_t EBD, int32_t EBH, int32_t EBW) { int32_t l, t, r, s; if(b_trans_){ l = ltrs / (EBD*EBH*EBW); int32_t trs = ltrs % (EBD*EBH*EBW); int32_t tr = trs / EBW; s = trs % EBW; t = tr / EBH; r = tr % EBH; } else{ int32_t rs = ltrs / NC_; l = ltrs % NC_; r = rs / EBW; s = rs % EBW; } if(flip){ r = EBH - 1 - r; s = EBW - 1 - s; } return std::make_tuple(l, t, r, s); } void conv::build_b_deltas(){ h_b_deltas_.resize(Luts_*upsample_d_*upsample_h_*upsample_w_); size_t Ds0 = Luts_; size_t Ds1 = upsample_w_; size_t Ds2 = upsample_h_; size_t Ds3 = upsample_d_; for(size_t ud = 0; ud < Ds3; ++ud) for(size_t uh = 0; uh < Ds2; ++uh) for(size_t uw = 0; uw < Ds1; ++uw) { int32_t* deltas_ptr = &h_b_deltas_[uw*Ds0 + uh*Ds0*Ds1 + ud*Ds0*Ds1*Ds2]; for(size_t i = 0; i < Luts_; ++i) { int32_t EBD = 1; int32_t EBH = ((upsample_h_ - uh - 1) + BH_) / upsample_h_; int32_t EBW = ((upsample_w_ - uw - 1) + BW_) / upsample_w_; if(EBD == 0 || EBH == 0 || EBW == 0) continue; int32_t c, t, r, s; int32_t nextc, nextt, nextr, nexts; std::tie(c, t, r, s) = unpack(i, false, EBD, EBH, EBW); std::tie(nextc, nextt, nextr, nexts) = unpack(i + TK_, false, EBD, EBH, EBW); int32_t cdiff = nextc - c; int32_t tdiff = (nextt - t)*upsample_d_; int32_t rdiff = (nextr - r)*upsample_h_; int32_t sdiff = (nexts - s)*upsample_w_; deltas_ptr[i] = cdiff*ld_b_[b_inner_idx_] + tdiff*ld_b_[b_pix_idx_] + rdiff*ld_b_[b_pix_idx_ + 1] + sdiff*ld_b_[b_pix_idx_ + 2]; } } } void conv::build_a_deltas(){ h_a_deltas_.resize(Luts_ + upsample_d_*upsample_h_*upsample_w_*Luts_); for(size_t i = 0; i < Luts_; ++i) h_a_deltas_[i] = (((i + TK_) % Luts_) - i); size_t Ds0 = Luts_; size_t Ds1 = upsample_w_; size_t Ds2 = upsample_h_; size_t Ds3 = upsample_d_; for(size_t ud = 0; ud < Ds3; ++ud) for(size_t uh = 0; uh < Ds2; ++uh) for(size_t uw = 0; uw < Ds1; ++uw) { int32_t* deltas_ptr = &h_a_deltas_[Luts_ + uw*Ds0 + uh*Ds0*Ds1 + ud*Ds0*Ds1*Ds2]; // cumulative increments for(size_t i = 0; i < Ds0; ++i) { int32_t EBD = 1; int32_t EBH = ((upsample_h_ - uh - 1) + BH_) / upsample_h_; int32_t EBW = ((upsample_w_ - uw - 1) + BW_) / upsample_w_; if(EBD == 0 || EBH == 0 || EBW == 0) continue; // unpack int32_t ctrs = i; int32_t c, t, r, s; std::tie(c, t, r, s) = unpack(ctrs, !b_trans_, EBD, EBH, EBW); // next indices int32_t nextctrs = ctrs + TK_; int32_t nextc, nextt, nextr, nexts; std::tie(nextc, nextt, nextr, nexts) = unpack(nextctrs, !b_trans_, EBD, EBH, EBW); // diffs int32_t cdiff = nextc - c; int32_t tdiff = nextt - t; int32_t rdiff = nextr - r; int32_t sdiff = nexts - s; if(ty_ == WGRAD){ tdiff = tdiff * stride_d_; rdiff = rdiff * stride_h_; sdiff = sdiff * stride_w_; } // delta pointers deltas_ptr[i] = cdiff*ld_a_[a_inner_idx_] + tdiff*ld_a_[a_pix_idx_] + rdiff*ld_a_[a_pix_idx_ + 1] + sdiff*ld_a_[a_pix_idx_ + 2]; } } } void conv::build_masks(){ h_masks_.resize(Luts_ + upsample_d_*upsample_h_*upsample_w_*(2*pad_h_+1)*(2*pad_w_+1)*(2*pad_d_+1)*Luts_); size_t Ms0 = Luts_; size_t Ms1 = 2*pad_w_ + 1; size_t Ms2 = 2*pad_h_ + 1; size_t Ms3 = 2*pad_d_ + 1; size_t Ms4 = upsample_w_; size_t Ms5 = upsample_h_; size_t Ms6 = upsample_d_; for(size_t ud = 0; ud < Ms6; ++ud) for(size_t uh = 0; uh < Ms5; ++uh) for(size_t uw = 0; uw < Ms4; ++uw) for(size_t pd = 0; pd < Ms3; ++pd) for(size_t ph = 0; ph < Ms2; ++ph) for(size_t pw = 0; pw < Ms1; ++pw){ int32_t* masks_ptr = &h_masks_[Luts_ + pw*Ms0 + ph*Ms0*Ms1 + pd*Ms0*Ms1*Ms2 + uw*Ms0*Ms1*Ms2*Ms3 + uh*Ms0*Ms1*Ms2*Ms3*Ms4 + ud*Ms0*Ms1*Ms2*Ms3*Ms4*Ms5]; for(size_t i = 0; i < Ms0; ++i){ int32_t l, t, r, s; int32_t mask = 0x0; for(size_t j = 0; j < TK_; ++j){ int32_t EBD = 1; int32_t EBH = ((upsample_h_ - uh - 1) + BH_) / upsample_h_; int32_t EBW = ((upsample_w_ - uw - 1) + BW_) / upsample_w_; if(EBD == 0 || EBH == 0 || EBW == 0) continue; std::tie(l, t, r, s) = unpack(i + j, !b_trans_, EBD, EBH, EBW); bool in_bounds_d = (t + pd) >= pad_d_ && (t + pd) < (EBD + pad_d_); bool in_bounds_h = (r + ph) >= pad_h_ && (r + ph) < (EBH + pad_h_); bool in_bounds_w = (s + pw) >= pad_w_ && (s + pw) < (EBW + pad_w_); mask |= (in_bounds_d && in_bounds_h && in_bounds_w) << j; } masks_ptr[i] = mask; } } for(size_t i = 0; i < Luts_; ++i) h_masks_[i] = 0x0; } std::array conv::get_grid(size_t TM, size_t TN){ return {(M_ + TM - 1)/TM, (N_ + TN - 1)/TN, 1}; } size_t conv::num_flops() const{ return 2.*M_*N_*K_; } void conv::init_impl(driver::stream *stream, triton::driver::cu_module* module, triton::runtime::launch_information info) { auto init_lut = [&](bool is_cst, const char *name, std::vector host) -> triton::driver::buffer*{ if(host.empty()) return nullptr; size_t nbytes = host.size()*4; // get buffer triton::driver::buffer* buffer; if(is_cst) buffer = module->symbol(name); else buffer = triton::driver::buffer::create(stream->context(), nbytes); // copy stream->write(buffer, false, 0, nbytes, host.data()); return buffer; }; if(d_a_deltas_ == nullptr) d_a_deltas_ = init_lut(is_a_deltas_cst, "delta", h_a_deltas_); if(d_b_deltas_ == nullptr) d_b_deltas_ = init_lut(is_b_deltas_cst_, "b_delta", h_b_deltas_); if(d_masks_ == nullptr) d_masks_ = init_lut(is_mask_cst_, "masks", h_masks_); if(d_locks_ == nullptr){ d_locks_ = triton::driver::buffer::create(stream->context(), max_grid_0_*max_grid_1_*4*2); ((triton::driver::cu_buffer*)d_locks_)->set_zero(stream, max_grid_0_*max_grid_1_*4*2); } } void conv::set_arg(driver::kernel *kernel, driver::buffer *a, driver::buffer *b, driver::buffer *c, driver::buffer *bias) { kernel->setArg(0, a); kernel->setArg(1, b); kernel->setArg(2, c); kernel->setArg(3, bias); kernel->setArg(4, M_); kernel->setArg(5, N_); kernel->setArg(6, K_); kernel->setArg(7, AH_); kernel->setArg(8, AW_); kernel->setArg(9, BH_); kernel->setArg(10, BW_); kernel->setArg(11, CH_); kernel->setArg(12, CW_); kernel->setArg(13, NC_); // A arguments kernel->setArg(14, ld_a_[a_outer_idx_]); kernel->setArg(15, ld_a_[a_inner_idx_]); kernel->setArg(16, ld_a_[2]); kernel->setArg(17, ld_a_[3]); kernel->setArg(18, ld_a_[4]); // B arguments kernel->setArg(19, ld_b_[b_inner_idx_]); kernel->setArg(20, ld_b_[b_pix_idx_]); kernel->setArg(21, ld_b_[b_pix_idx_+1]); kernel->setArg(22, ld_b_[b_pix_idx_+2]); kernel->setArg(23, ld_b_[b_outer_idx_]); // C arguments kernel->setArg(24, ld_c_[c_outer_0_idx_]); kernel->setArg(25, ld_c_[c_outer_1_idx_]); kernel->setArg(26, ld_c_[c_pix_idx]); kernel->setArg(27, ld_c_[c_pix_idx+1]); kernel->setArg(28, ld_c_[c_pix_idx+2]); // pad kernel->setArg(29, pad_h_); kernel->setArg(30, pad_w_); // stride kernel->setArg(31, stride_h_); kernel->setArg(32, stride_w_); // dilate kernel->setArg(33, upsample_h_); kernel->setArg(34, upsample_w_); kernel->setArg(35, (int32_t)0); kernel->setArg(36, (int32_t)0); kernel->setArg(37, pad_h_); kernel->setArg(38, pad_w_); kernel->setArg(39, (int32_t)0); kernel->setArg(40, (int32_t)0); kernel->setArg(41, d_locks_); kernel->setArg(42, max_grid_0_); kernel->setArg(43, max_grid_1_); size_t idx = 44; if(!is_a_deltas_cst) kernel->setArg(idx++, d_a_deltas_); if(!is_b_deltas_cst_) kernel->setArg(idx++, d_b_deltas_); if(!is_mask_cst_) kernel->setArg(idx++, d_masks_); } void conv::enqueue_impl(driver::stream *stream, driver::kernel *kernel, std::vector args, runtime::launch_information info) { driver::buffer *a = args[0], *b = args[1], *c = args[2], *bias = args[3]; unsigned TM = info.globals["TM"], TN = info.globals["TN"]; unsigned GZ = 1; set_arg(kernel, a, b, c, bias); std::array grid = {1}; grid[0] = (M_ + TM - 1)/TM; grid[1] = (N_ + TN - 1)/TN; grid[2] = GZ; grid[0] /= upsample_h_*upsample_w_; kernel->setArg(11, CH_/upsample_h_); kernel->setArg(12, CW_/upsample_w_); // initialize to zero if necessary bool init_zero = false; for(int32_t off_uh = 0; off_uh < upsample_h_; off_uh++) for(int32_t off_uw = 0; off_uw < upsample_w_; off_uw++) { int32_t EBD = 1; int32_t EBH = ((upsample_h_ - off_uh - 1) + BH_) / upsample_h_; int32_t EBW = ((upsample_w_ - off_uw - 1) + BW_) / upsample_w_; if(EBD == 0 || EBH == 0 || EBW == 0) init_zero = true; } if(init_zero) ((driver::cu_buffer*)c)->set_zero(stream, c_size()*4); for(int32_t off_uh = 0; off_uh < upsample_h_; off_uh++) for(int32_t off_uw = 0; off_uw < upsample_w_; off_uw++) { int32_t EBD = 1; int32_t EBH = ((upsample_h_ - off_uh - 1) + BH_) / upsample_h_; int32_t EBW = ((upsample_w_ - off_uw - 1) + BW_) / upsample_w_; if(EBD == 0 || EBH == 0 || EBW == 0) continue; int32_t K = shapes_b_[b_inner_idx_]*EBD*EBH*EBW; kernel->setArg(6, K); kernel->setArg(9, EBH); kernel->setArg(10, EBW); kernel->setArg(29, pad_h_); kernel->setArg(30, pad_w_); kernel->setArg(35, off_uh); kernel->setArg(36, off_uw); kernel->setArg(37, (pad_h_ + (1 - upsample_h_)*off_uh)/upsample_h_); kernel->setArg(38, (pad_w_ + (1 - upsample_w_)*off_uw)/upsample_w_); kernel->setArg(39, (off_uh + pad_h_) % upsample_h_); kernel->setArg(40, (off_uw + pad_w_) % upsample_w_); stream->enqueue(kernel, grid, {info.num_threads, 1, 1}); } } std::vector conv::default_params() { if(b_lut_){ if(!b_trans_) return {16, 2, 32, 16, 16, 8, 8, 2, 2, 4, 2, 8, 4, 2, 1}; else return {32, 2, 64, 32, 2, 64, 16, 8, 2, 2, 4, 2, 8, 1}; } else if(ty_ == FPROP) return {16, 2, 64, 32, 2, 64, 16, 8, 2, 2, 8, 1, 8, 4, 1}; else return {16, 2, 64, 16, 16, 16, 4, 2, 2, 4, 2, 8, 4, 2, 1}; } /* CPU reference implementation */ template void conv::cpu_xprop(OUT_DTYPE* C, IN_DTYPE* A, IN_DTYPE* B) { IN_DTYPE acc; for(int32_t n = 0; n < shapes_c_[0]; ++n) for(int32_t cf = 0; cf < shapes_c_[1] ; ++cf) for(int32_t cd = 0 ; cd < shapes_c_[2]; ++cd) for(int32_t ch = 0 ; ch < shapes_c_[3]; ++ch) for(int32_t cw = 0; cw < shapes_c_[4]; ++cw) { acc = 0; int32_t d = cd*stride_d_ - pad_d_; int32_t h = ch*stride_h_ - pad_h_; int32_t w = cw*stride_w_ - pad_w_; for(int32_t ac = 0; ac < shapes_a_[1]; ++ac) for(int32_t bd = 0; bd < shapes_b_[1]; ++bd) for(int32_t bh = 0; bh < shapes_b_[2]; ++bh) for(int32_t bw = 0; bw < shapes_b_[3]; ++bw){ int32_t ad = d + bd; int32_t ah = h + bh; int32_t aw = w + bw; bool in_bounds = (ad >= 0 && ad < shapes_a_[2] && ah >= 0 && ah < shapes_a_[3] && aw >= 0 && aw < shapes_a_[4]); IN_DTYPE a = 0; if(in_bounds) a = A[n*ld_a_[0] + ac*ld_a_[1] + ad*ld_a_[2] + ah*ld_a_[3] + aw*ld_a_[4]]; IN_DTYPE b; if(b_trans_) b = B[ac*ld_b_[0] + bd*ld_b_[1] + bh*ld_b_[2] + bw*ld_b_[3] + cf*ld_b_[4]]; else{ int32_t bdd = shapes_b_[1] - 1 - bd; int32_t bhh = shapes_b_[2] - 1 - bh; int32_t bww = shapes_b_[3] - 1 - bw; b = B[cf*ld_b_[0] + bdd*ld_b_[1] + bhh*ld_b_[2] + bww*ld_b_[3] + ac*ld_b_[4]]; } acc = std::fma(a, b, acc); } C[n*ld_c_[0] + cf*ld_c_[1] + cd*ld_c_[2] + ch*ld_c_[3] + cw*ld_c_[4]] = acc; } } template void conv::cpu_wgrad(OUT_DTYPE* C, IN_DTYPE* A, IN_DTYPE* B) { IN_DTYPE acc; for(int32_t c = 0 ; c < shapes_c_[0]; ++c) for(int32_t cd = 0; cd < shapes_c_[1]; ++cd) for(int32_t ch = 0; ch < shapes_c_[2]; ++ch) for(int32_t cw = 0; cw < shapes_c_[3]; ++cw) for(int32_t k = 0 ; k < shapes_c_[4]; ++k) { acc = 0; int32_t d = cd*stride_d_ - pad_d_; int32_t h = ch*stride_h_ - pad_h_; int32_t w = cw*stride_w_ - pad_w_; for(int32_t n = 0; n < shapes_b_[0]; ++n) for(int32_t bd = 0; bd < shapes_b_[2]; ++bd) for(int32_t bh = 0; bh < shapes_b_[3]; ++bh) for(int32_t bw = 0; bw < shapes_b_[4]; ++bw){ int32_t ad = d + bd; int32_t ah = h + bh; int32_t aw = w + bw; bool in_bounds = (ad >= 0 && ad < shapes_a_[2] && ah >= 0 && ah < shapes_a_[3] && aw >= 0 && aw < shapes_a_[4]); IN_DTYPE a = 0; if(in_bounds) a = A[n*ld_a_[0] + c*ld_a_[1] + ad*ld_a_[2] + ah*ld_a_[3] + aw*ld_a_[4]]; IN_DTYPE b = B[n*ld_b_[0] + k*ld_b_[1] + bd*ld_b_[2] + bh*ld_b_[3] + bw*ld_b_[4]]; acc = std::fma(a, b, acc); } C[c*ld_c_[0] + cd*ld_c_[1] + ch*ld_c_[2] + cw*ld_c_[3] + k*ld_c_[4]] = acc; } } template void conv::cpu_ref(OUT_DTYPE* C, IN_DTYPE* A, IN_DTYPE* B) { if(ty_ == FPROP || ty_ == BPROP) cpu_xprop(C, A, B); else cpu_wgrad(C, A, B); } /* Triton-C source code */ void conv::triton_c_src(std::ostream &os) const { std::string BS = b_trans_ ? "[TN,TK]" : "[TK, TN]"; std::string bcb0 = b_trans_ ? "[:, newaxis]" : "[newaxis, :]"; std::string bcb1 = b_trans_ ? "[newaxis, :]" : "[:, newaxis]"; std::string ldb0 = b_trans_ ? "*ldb_s" : ""; std::string useb = b_trans_ ? "trans(b)" : "b"; std::string flipr = b_trans_ ? "" : "BH - 1 -"; std::string flips = b_trans_ ? "" : "BW - 1 -"; std::string upar = ty_ == WGRAD ? "stride_h * ": ""; std::string upas = ty_ == WGRAD ? "stride_w * ": ""; std::string upah = ty_ == WGRAD ? "": "*stride_h"; std::string upaw = ty_ == WGRAD ? "": "*stride_w"; std::vector crs = {"c", "r", "s"}; std::vector rsc = {"r", "s", "c"}; std::vector ax = b_trans_ ? crs : rsc; std::vector redax; if(b_trans_) redax = {"NC", "BH", "BW"}; else redax = {"BH", "BW", "NC"}; std::string inc_pb = b_lut_ ? "db" + bcb1 : "TK" + ldb0; std::string inc_pdb = b_trans_ ? "incd" : "TK"; std::string a_delta_mem = is_a_deltas_cst ? "__constant__" : ""; std::string b_delta_mem = is_b_deltas_cst_? "__constant__" : ""; std::string masks_mem = is_mask_cst_? "__constant__" : ""; os << R"( const tunable int TM = {16, 32, 64}; const tunable int TN = {16, 32, 64}; const tunable int TK = {)" << TK_ << R"(}; const tunable int GZ = {1}; )"; if(is_a_deltas_cst) os << "__constant__ int* delta = alloc_const int[" + std::to_string(h_a_deltas_.size()) + "];\n"; if(b_lut_ && is_b_deltas_cst_) os << "__constant__ int* b_delta = alloc_const int[" + std::to_string(h_b_deltas_.size()) + "];\n"; if(is_mask_cst_) os << "__constant__ int* masks = alloc_const int[" + std::to_string(h_masks_.size()) + "];\n"; os << R"( void conv(read_only restrict )" << a_ty_ << R"( *a, read_only restrict )" << b_ty_ << R"( *b, float *c, float *bias, int M, int N, int K, int AH, int AW, int BH, int BW, int CH, int CW, int NC, int lda_n, int lda_c, int lda_d, int lda_h, int lda_w, int ldb_c, int ldb_t, int ldb_r, int ldb_s, int ldb_k, int ldc_n, int ldc_k, int ldc_m, int ldc_p, int ldc_q, int pad_h, int pad_w, int stride_h, int stride_w, int upsample_h, int upsample_w, int off_uh, int off_uw, int off_uah, int off_uaw, int off_uch, int off_ucw, int *locks, int grid0, int grid1)"; if(!is_a_deltas_cst) os << ", int* delta"; if(b_lut_ && !is_b_deltas_cst_) os << ", int* b_delta"; if(!is_mask_cst_) os << ", int* masks"; os << R"(){ int rxa[TM] = get_global_range[TM](0); int rb0[TN] = get_global_range[TN](1); int rz = get_global_range[1](2); int rka[TK] = 0 ... TK; int rkb[TK] = 0 ... TK; float C[TM, TN] = 0; int ldlut = )" + std::to_string(Luts_) + R"(; int div = K / GZ; int rem = K % GZ; K = select(rz < rem, div, div + rem); int offk = rz*div; rka = rka + offk; rkb = rkb + offk; int rabh[TM] = rxa / CW; int raw[TM] = rxa % CW; int rab[TM] = rabh / CH; int rah[TM] = rabh % CH; rah = rah)" + upaw + R"( - off_uah; raw = raw)" + upah + R"( - off_uaw; int ra0[TM] = rab*lda_n + rah*lda_h + raw*lda_w; int ra)" + ax[0] + ax[1] + "[TK] = rka / " + redax[2] + R"(; int ra)" + ax[2] + "[TK] = rka % " + redax[2] + R"(; int ra)" + ax[0] + "[TK] = ra" + ax[0] + ax[1] + " / " + redax[1] + R"(; int ra)" + ax[1] + "[TK] = ra" + ax[0] + ax[1] + " % " + redax[1] + R"(; rar = )" + flipr + R"( rar; ras = )" + flips + R"( ras; rar = )" + upar + R"( rar; ras = )" + upas + R"( ras; int ra1[TK] = rac*lda_c + rar*lda_h + ras*lda_w; )" << a_ty_ << R"(* pa[TM, TK] = a + ra1[newaxis, :] + ra0[:, newaxis];)"; if(b_lut_){ os << R"( int rb)" + ax[0] + ax[1] + "[TK] = rkb / " + redax[2] + R"(; int rb)" + ax[2] + "[TK] = rkb % " + redax[2] + R"(; int rb)" + ax[0] + "[TK] = rb" + ax[0] + ax[1] + " / " + redax[1] + R"(; int rb)" + ax[1] + "[TK] = rb" + ax[0] + ax[1] + " % " + redax[1] + R"(; rbr = rbr*upsample_h + off_uh; rbs = rbs*upsample_w + off_uw; int offdb[TK] = rkb % ldlut; int rb1[TK] = rbc*ldb_c + rbr*ldb_r + rbs*ldb_s; )" + b_delta_mem + R"( int* pdb[TK] = b_delta + offdb + off_uw*ldlut + off_uh*ldlut*upsample_w; int db[TK] = *pdb;)"; } else{ os << R"( int rb1[TK] = rkb)" + ldb0 + ";"; } os << R"( )" << b_ty_ << R"(* pb)" + BS + " = b + rb1" + bcb1 + " + rb0" + bcb0 + R"(*ldb_k; int offda[TK] = rka % ldlut; )" + a_delta_mem + R"( int* pincd[TK] = delta + offda; )" + a_delta_mem + R"( int* pda[TK] = delta + ldlut + offda + off_uw*ldlut + off_uh*ldlut*upsample_w; int da[TK] = *pda; int incd[TK] = *pincd; int maskh[TM] = pad_h + min(rah, 0) + max(rah + BH - AH, 0); int maskw[TM] = pad_w + min(raw, 0) + max(raw + BW - AW, 0); int offma = offk % ldlut; )" + masks_mem + R"( int* pm[TM] = masks + ldlut + offma + maskw*ldlut + maskh*ldlut*(2*pad_w + 1) + off_uw*ldlut*(2*pad_w+1)*(2*pad_h+1) + off_uh*ldlut*(2*pad_w+1)*(2*pad_h+1)*upsample_w; )" + a_delta_mem + R"( int* pincm[TM] = delta + offma; int incm[TM] = *pincm; int maska0[TM] = *pm; int maska1[TK] = 1 << (0 ... TK); bool checka[TM, TK] = (maska0[:, newaxis] & maska1[newaxis, :]) > 0; bool checkb0[TN] = rb0 < N; bool checkb)" + BS + " = checkb0" + bcb0 + R"(; )" << a_ty_ << R"( a[TM, TK] = checka ? *pa : 0; )" << b_ty_ << R"( b)" + BS + R"( = checkb ? *pb : 0; int rkamin[TK] = rka - offk + TK; for(int k = K; k > 0; k = k - TK){ C = dot(a, )" + useb + R"(, C); pa = pa + da[newaxis, :]; pb = pb + )" + inc_pb + R"(; pda = pda + incd;)"; if(b_lut_){ os << R"( pdb = pdb + )" + inc_pdb + R"(; db = *pdb;)"; } os << R"( pincd = pincd + incd; da = *pda; incd = *pincd; pm = pm + incm; pincm = pincm + incm; incm = *pincm; bool checka1[TK] = (rkamin < k); maska0 = *pm; checka = (maska0[:, newaxis] & maska1[newaxis, :]) > 0; checka = checka && checka1[newaxis,:]; a = checka ? *pa : 0; checkb = checkb && (k > TK); @checkb b = *pb; } int rxc[TM] = get_global_range[TM](0); int rc1[TN] = get_global_range[TN](1); int rcn[TM] = rxc / (CH*CW); int rcpq[TM] = rxc % (CH*CW); int rcp[TM] = rcpq / CW; int rcq[TM] = rcpq % CW; rcp = rcp * upsample_h + off_uch; rcq = rcq * upsample_w + off_ucw; bool checkc1[TN] = rc1 < N; int rc0[TM] = rcn * ldc_n + rcp * ldc_p + rcq * ldc_q; float* pc[TM, TN] = c + rc1[newaxis, :]*ldc_k + rc0[:, newaxis]; bool checkc0[TM] = rxc < M; bool checkc[TM, TN] = checkc0[:, newaxis] && checkc1[newaxis, :]; int ridx = get_program_id(0); int ridy = get_program_id(1); int *plock = locks + ridx + ridy*grid0; while(__atomic_cas(plock, 0, 1) == 1); int *pcount = plock + grid0*grid1; int count = *pcount; int countp1 = select(count == GZ - 1, 0, count + 1); if(count == 0) {)"; if(bias_ && ty_==FPROP){ os << R"( float* pbias[TN] = bias + rc1; float bias[TN] = checkc1 ? *pbias : 0; C = C + bias[newaxis, :];)"; } os << R"( @checkc *pc = C; *pcount = countp1; } else { @checkc *pc = C + *pc; *pcount = countp1; } *plock = 0; })"; } template void conv::cpu_ref(float*, float*, float*); template void conv::cpu_xprop(float*, float*, float*); template void conv::cpu_wgrad(float*, float*, float*); } }