import triton import tensorflow as tf import numpy as np src = """ const tunable int TM = {128}; const tunable int TN = {128}; const tunable int TK = {32}; void matmul(restrict read_only align(16) half *A, restrict read_only align(16) half *B, restrict read_only align(16) half *C, int M, int N, int K, multiple_of(8) int lda, multiple_of(8) int ldb, int ldc) { int ridx = get_program_id(0); int ridy = get_program_id(1); int rxa[TM] = ridx * TM + (0 ... TM); int ryb[TN] = ridy * TN + (0 ... TN); int rka[TK] = 0 ... TK; int rkb[TK] = 0 ... TK; float xc[TM, TN] = 0; half* pa[TM, TK] = A + rka[newaxis, :]*lda + rxa[:, newaxis]; half* pb[TN, TK] = B + rkb[newaxis, :]*ldb + ryb[:, newaxis]; half a[TM, TK] = *pa; half b[TN, TK] = *pb; for(int k = K; k > 0; k = k - TK){ xc = dot(a, trans(b), xc); pa = pa + TK*lda; pb = pb + TK*ldb; a = *pa; b = *pb; } int rxc[TM] = ridx * TM + (0 ... TM); int ryc[TN] = ridy * TN + (0 ... TN); half* pc[TM, TN] = C + ryc[newaxis, :] + rxc[:, newaxis]*ldc; half c[TM, TN] = xc; bool checkc0[TM] = rxc < M; bool checkc1[TN] = ryc < N; bool checkc[TM, TN] = checkc0[:, newaxis] && checkc1[newaxis, :]; @checkc *pc = c; } """ class dot: def __init__(self): self.matmul = triton.make_tensorflow_op(src, ['C'], ['(M + #TM - 1)/#TM', '(N + #TN - 1)/#TN']) def __call__(self, a, b): shape_a = tf.shape(a) shape_b = tf.shape(b) M = shape_a[0] K = shape_a[1] N = shape_b[0] lda = M ldb = K ldc = N c = triton.empty([M, N]) return self.matmul.matmul(a, b, c, M, N, K, lda, ldb, ldc) dot_tn = dot() def run_dot(): M, N, K = 128, 128, 128 a = tf.placeholder(tf.float16, shape=[M, K]) b = tf.placeholder(tf.float16, shape=[N, K]) # c = tf.matmul(a, b, transpose_a=True) c = dot_tn(a, b) # Reference ha = np.random.rand(M, K).astype(np.float16) hb = np.random.rand(N, K).astype(np.float16) # Run sess = tf.InteractiveSession() sess.run(tf.global_variables_initializer()) result = sess.run([c], feed_dict = {a: ha, b: hb})[0] # Test hresult = np.dot(ha.T, hb) dif = np.abs(result - hresult) np.savetxt('dif.dat', dif, '%2.4f') print(hresult) print(result) print("dif: %f" % np.max(dif)) run_dot()