.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "getting-started/tutorials/05-layer-norm.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_getting-started_tutorials_05-layer-norm.py: Layer Normalization ==================== .. GENERATED FROM PYTHON SOURCE LINES 5-252 .. image:: /getting-started/tutorials/images/sphx_glr_05-layer-norm_001.png :alt: 05 layer norm :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none layer-norm-backward: N Triton Torch Apex 0 1024.0 311.088617 98.303995 303.407414 1 1536.0 351.085717 133.565214 341.333333 2 2048.0 420.102553 162.217818 327.679984 3 2560.0 465.454542 182.314537 332.108113 4 3072.0 511.999982 191.999993 317.793096 5 3584.0 551.384634 207.768111 309.410081 6 4096.0 568.231237 220.412561 300.623865 7 4608.0 500.416301 233.316456 290.267724 8 5120.0 525.128191 242.845844 287.102804 9 5632.0 538.517949 243.107920 289.438969 10 6144.0 544.118087 250.775512 287.438593 11 6656.0 536.053693 255.590406 285.257135 12 7168.0 512.000004 256.381525 280.639473 13 7680.0 486.332448 264.447629 279.272719 14 8192.0 464.794337 268.223740 283.296835 15 8704.0 416.958106 264.091015 280.021457 16 9216.0 430.319054 272.729961 289.887291 17 9728.0 438.857162 281.630872 289.667485 18 10240.0 446.836366 286.100109 288.112552 19 10752.0 426.525614 247.884724 292.240100 20 11264.0 431.157894 243.765566 283.668421 21 11776.0 423.724129 249.888595 288.391833 22 12288.0 420.701865 253.796902 294.617366 23 12800.0 414.574901 254.515329 290.359162 24 13312.0 411.181478 253.360814 289.653667 25 13824.0 407.587209 256.991469 291.543045 26 14336.0 395.930964 254.109315 286.959121 27 14848.0 384.414233 258.976744 289.717061 28 15360.0 377.704925 260.155264 290.039336 29 15872.0 369.116300 262.708969 291.452168 | .. code-block:: default import torch import triton.language as tl import triton # Forward Pass @triton.jit def _layer_norm_fwd_fused(X, Y, W, B, M, V, stride, N, eps, **META): BLOCK_SIZE = META['BLOCK_SIZE'] # position of elements processed by this program row = tl.program_id(0) cols = tl.arange(0, BLOCK_SIZE) mask = cols < N # offset data pointers to start at the row of interest X += row * stride Y += row * stride # load data and cast to float32 x = tl.load(X + cols, mask=mask, other=0).to(tl.float32) # compute mean mean = tl.sum(x, axis=0) / N # compute std xmean = tl.where(mask, x - mean, 0.) var = tl.sum(xmean * xmean, axis=0) / N rstd = 1 / tl.sqrt(var + eps) xhat = xmean*rstd # write-back mean/rstd tl.store(M + row, mean) tl.store(V + row, rstd) # multiply by weight and add bias w = tl.load(W + cols, mask=mask) b = tl.load(B + cols, mask=mask) y = xhat * w + b # write-back tl.store(Y + cols, y, mask=mask) # Backward pass (DX + partial DW + partial DB) @triton.jit def _layer_norm_bwd_dx_fused(DX, DY, DW, DB, X, W, B, M, V, Lock, stride, N, eps, **META): GROUP_SIZE_M = META['GROUP_SIZE_M'] BLOCK_SIZE_N = META['BLOCK_SIZE_N'] # position of elements processed by this program row = tl.program_id(0) cols = tl.arange(0, BLOCK_SIZE_N) mask = cols < N # offset data pointers to start at the row of interest X += row * stride DY += row * stride DX += row * stride # offset locks and weight/bias gradient pointer # each kernel instance accumulates partial sums for # DW and DB into one of GROUP_SIZE_M independent buffers # these buffers stay in the L2, which allow this kernel # to be fast lock_id = row % GROUP_SIZE_M Lock += lock_id Count = Lock + GROUP_SIZE_M DW = DW + lock_id*N + cols DB = DB + lock_id*N + cols # load data to SRAM x = tl.load(X + cols, mask=mask, other=0).to(tl.float32) dy = tl.load(DY + cols, mask=mask, other=0).to(tl.float32) w = tl.load(W + cols, mask=mask).to(tl.float32) mean = tl.load(M + row) rstd = tl.load(V + row) # compute dx xhat = (x - mean)*rstd wdy = w * dy xhat = tl.where(mask, xhat, 0.) wdy = tl.where(mask, wdy , 0.) mean1 = tl.sum(xhat * wdy, axis=0) / N mean2 = tl.sum(wdy, axis=0) / N dx = (wdy - (xhat*mean1 + mean2))*rstd # write-back dx tl.store(DX + cols, dx, mask=mask) # accumulate partial sums for dw/db partial_dw = (dy*xhat).to(w.dtype) partial_db = (dy).to(w.dtype) while tl.atomic_cas(Lock, 0, 1) == 1: pass count = tl.load(Count) # first store doesn't accumulate if count == 0: tl.atomic_xchg(Count, 1) else: partial_dw += tl.load(DW, mask=mask) partial_db += tl.load(DB, mask=mask) tl.store(DW, partial_dw, mask=mask) tl.store(DB, partial_db, mask=mask) # release lock tl.atomic_xchg(Lock, 0) # Backward pass (total DW + total DB) @triton.jit def _layer_norm_bwd_dwdb(DW, DB, FINAL_DW, FINAL_DB, M, N, **meta): pid = tl.program_id(0) BLOCK_SIZE_M = meta['BLOCK_SIZE_M'] BLOCK_SIZE_N = meta['BLOCK_SIZE_N'] cols = pid*BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) dw = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) db = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) for i in range(0, M, BLOCK_SIZE_M): rows = i + tl.arange(0, meta['BLOCK_SIZE_M']) mask = (rows[:, None] < M) & (cols[None, :] < N) offs = rows[:, None]*N + cols[None, :] dw += tl.load(DW + offs, mask=mask, other=0.) db += tl.load(DB + offs, mask=mask, other=0.) sum_dw = tl.sum(dw, axis=0) sum_db = tl.sum(db, axis=0) tl.store(FINAL_DW + cols, sum_dw, mask=cols BLOCK_SIZE: raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.") # heuristics for number of warps num_warps = min(max(BLOCK_SIZE // 256, 1), 8) # enqueue kernel _layer_norm_fwd_fused[(M,)](x_arg, y, weight, bias, mean, rstd, x_arg.stride(0), N, eps, BLOCK_SIZE=BLOCK_SIZE, num_warps=num_warps) ctx.save_for_backward(x, weight, bias, mean, rstd) ctx.BLOCK_SIZE = BLOCK_SIZE ctx.num_warps = num_warps ctx.eps = eps return y @staticmethod def backward(ctx, dy): x, w, b, m, v = ctx.saved_tensors # heuristics for amount of parallel reduction stream for DG/DB N = w.shape[0] GROUP_SIZE_M = 64 if N <= 8192: GROUP_SIZE_M = 96 if N <= 4096: GROUP_SIZE_M = 128 if N <= 1024: GROUP_SIZE_M = 256 # allocate output locks = torch.zeros(2*GROUP_SIZE_M, dtype=torch.int32, device='cuda') _dw = torch.empty((GROUP_SIZE_M, w.shape[0]), dtype=x.dtype, device=w.device) _db = torch.empty((GROUP_SIZE_M, w.shape[0]), dtype=x.dtype, device=w.device) dw = torch.empty((w.shape[0],), dtype=w.dtype, device=w.device) db = torch.empty((w.shape[0],), dtype=w.dtype, device=w.device) dx = torch.empty_like(dy) # enqueue kernel using forward pass heuristics # also compute partial sums for DW and DB x_arg = x.reshape(-1, x.shape[-1]) M, N = x_arg.shape _layer_norm_bwd_dx_fused[(M,)](dx, dy, _dw, _db, x, w, b, m, v, locks, x_arg.stride(0), N, ctx.eps, BLOCK_SIZE_N=ctx.BLOCK_SIZE, GROUP_SIZE_M=GROUP_SIZE_M, num_warps=ctx.num_warps) grid = lambda meta: [triton.cdiv(N, meta['BLOCK_SIZE_N'])] # accumulate partial sums in separate kernel _layer_norm_bwd_dwdb[grid](_dw, _db, dw, db, GROUP_SIZE_M, N, BLOCK_SIZE_M = 32, BLOCK_SIZE_N = 128) return dx, None, dw, db, None layer_norm = LayerNorm.apply def test_layer_norm(M, N, dtype, eps=1e-5, device='cuda'): # create data x_shape = (M, N) w_shape = (x_shape[-1], ) weight = torch.rand(w_shape, dtype=dtype, device='cuda', requires_grad=True) bias = torch.rand(w_shape, dtype=dtype, device='cuda', requires_grad=True) x = -2.3 + 0.5*torch.randn(x_shape, dtype=dtype, device='cuda') dy = .1*torch.randn_like(x) x.requires_grad_(True) # forward pass y_tri = layer_norm(x, w_shape, weight, bias, eps) y_ref = torch.nn.functional.layer_norm(x, w_shape, weight, bias, eps).to(dtype) # backward pass (triton) y_tri.backward(dy, retain_graph=True) dx_tri, dw_tri, db_tri = [_.grad.clone() for _ in [x, weight, bias]] x.grad, weight.grad, bias.grad = None, None, None # backward pass (torch) y_ref.backward(dy, retain_graph=True) dx_ref, dw_ref, db_ref = [_.grad.clone() for _ in [x, weight, bias]] # compare triton.testing.assert_almost_equal(y_tri, y_ref) triton.testing.assert_almost_equal(dx_tri, dx_ref) triton.testing.assert_almost_equal(db_tri, db_ref, decimal=1) triton.testing.assert_almost_equal(dw_tri, dw_ref, decimal=1) @triton.testing.perf_report( triton.testing.Benchmark( x_names=['N'], x_vals=[512 * i for i in range(2, 32)], line_arg='provider', line_vals=['triton', 'torch', 'apex'], line_names=['Triton', 'Torch', 'Apex'], styles=[('blue', '-'), ('green', '-'), ('orange', '-')], ylabel='GB/s', plot_name='layer-norm-backward', args={'M': 4096, 'dtype': torch.float16, 'mode': 'backward'} ) ) def bench_layer_norm(M, N, dtype, provider, mode='backward',eps=1e-5, device='cuda'): # create data x_shape = (M, N) w_shape = (x_shape[-1], ) weight = torch.rand(w_shape, dtype=dtype, device='cuda', requires_grad=True) bias = torch.rand(w_shape, dtype=dtype, device='cuda', requires_grad=True) x = -2.3 + 0.5*torch.randn(x_shape, dtype=dtype, device='cuda') dy = .1*torch.randn_like(x) x.requires_grad_(True) # utility functions if provider == 'triton': y_fwd = lambda: layer_norm(x, w_shape, weight, bias, eps) if provider == 'torch': y_fwd = lambda: torch.nn.functional.layer_norm(x, w_shape, weight, bias, eps) if provider == 'apex': import apex apex_layer_norm = apex.normalization.FusedLayerNorm(w_shape).to(x.device).to(x.dtype) y_fwd = lambda: apex_layer_norm(x) # forward pass if mode == 'forward': gbps = lambda ms: 2*x.numel()*x.element_size()/ms*1e-6 ms, min_ms, max_ms = triton.testing.do_bench(y_fwd, rep=500) # backward pass if mode == 'backward': gbps = lambda ms: 3*x.numel()*x.element_size()/ms*1e-6 y = y_fwd() ms, min_ms, max_ms = triton.testing.do_bench(lambda: y.backward(dy, retain_graph=True), grad_to_none=[x], rep=500) return gbps(ms), gbps(max_ms), gbps(min_ms) bench_layer_norm.run(save_path='.', print_data=True) .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 2 minutes 12.467 seconds) .. _sphx_glr_download_getting-started_tutorials_05-layer-norm.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: 05-layer-norm.py <05-layer-norm.py>` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: 05-layer-norm.ipynb <05-layer-norm.ipynb>` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_