import pytest import itertools import triton import torch @pytest.mark.parametrize( "BLOCK_M, BLOCK_N, BLOCK_K, SPLIT_K, NWARP, NSTAGE, M, N, K, AT, BT, DTYPE", itertools.chain( *[ [ # 1 warp (16, 16, 16, 1, 1, 2, None, None, None, AT, BT, DTYPE), (32, 16, 16, 1, 1, 2, None, None, None, AT, BT, DTYPE), (16, 32, 16, 1, 1, 2, None, None, None, AT, BT, DTYPE), (16, 16, 32, 1, 1, 2, None, None, None, AT, BT, DTYPE), (32, 16, 32, 1, 1, 2, None, None, None, AT, BT, DTYPE), (16, 32, 32, 1, 1, 2, None, None, None, AT, BT, DTYPE), (16, 16, 64, 1, 1, 2, None, None, None, AT, BT, DTYPE), (64, 16, 64, 1, 1, 2, None, None, None, AT, BT, DTYPE), (16, 64, 64, 1, 1, 2, None, None, None, AT, BT, DTYPE), # 2 warp (64, 32, 64, 1, 2, 2, None, None, None, AT, BT, DTYPE), (32, 64, 64, 1, 2, 2, None, None, None, AT, BT, DTYPE), (64, 32, 16, 1, 2, 2, None, None, None, AT, BT, DTYPE), (32, 64, 16, 1, 2, 2, None, None, None, AT, BT, DTYPE), (128, 32, 32, 1, 2, 2, None, None, None, AT, BT, DTYPE), (32, 128, 32, 1, 2, 2, None, None, None, AT, BT, DTYPE), # 4 warp (128, 64, 16, 1, 4, 2, None, None, None, AT, BT, DTYPE), (64, 128, 16, 1, 4, 2, None, None, None, AT, BT, DTYPE), (128, 32, 32, 1, 4, 2, None, None, None, AT, BT, DTYPE), (32, 128, 32, 1, 4, 2, None, None, None, AT, BT, DTYPE), (128, 32, 64, 1, 4, 2, None, None, None, AT, BT, DTYPE), (32, 128, 64, 1, 4, 2, None, None, None, AT, BT, DTYPE), # 8 warp (128, 256, 16, 1, 8, 2, None, None, None, AT, BT, DTYPE), (256, 128, 16, 1, 8, 2, None, None, None, AT, BT, DTYPE), (256, 128, 32, 1, 8, 2, None, None, None, AT, BT, DTYPE), # split-k (64, 64, 16, 2, 4, 2, None, None, None, AT, BT, DTYPE), (64, 64, 16, 4, 4, 2, None, None, None, AT, BT, DTYPE), (64, 64, 16, 8, 4, 2, None, None, None, AT, BT, DTYPE), # variable input (128, 128, 32, 1, 4, 2, 1024, 1024, 1024, AT, BT, DTYPE), (128, 128, 32, 1, 4, 2, 384, 128, 640, AT, BT, DTYPE), (128, 128, 32, 1, 4, 2, 107, 233, 256, AT, BT, DTYPE), (128, 128, 32, 1, 4, 2, 107, 233, 311, AT, BT, DTYPE), ] for DTYPE in ["float16", "float32"] for AT in [False, True] for BT in [False, True] ], # n-stage *[ [ (16, 16, 16, 1, 1, STAGES, 1024, 1024, 1024, AT, BT, DTYPE), (64, 32, 64, 1, 2, STAGES, 1024, 1024, 1024, AT, BT, DTYPE), (128, 64, 16, 1, 4, STAGES, 1024, 1024, 1024, AT, BT, DTYPE), (256, 128, 32, 1, 8, STAGES, 1024, 1024, 1024, AT, BT, DTYPE), (128, 128, 32, 1, 4, STAGES, 384, 128, 640, AT, BT, DTYPE), # split-k (64, 64, 16, 8, 4, STAGES, 1024, 1024, 1024, AT, BT, DTYPE), (64, 64, 16, 8, 4, STAGES, 1024, 1024, 32, AT, BT, DTYPE), ] for DTYPE in ["float16", "float32"] for AT in [False, True] for BT in [False, True] for STAGES in [2, 3, 4] ] ), ) def test_op(BLOCK_M, BLOCK_N, BLOCK_K, SPLIT_K, NWARP, NSTAGE, M, N, K, AT, BT, DTYPE): torch.manual_seed(0) # nuke kernel decorators -- will set meta-parameters manually kwargs = {'BLOCK_M': BLOCK_M, 'BLOCK_N': BLOCK_N, 'BLOCK_K': BLOCK_K, 'SPLIT_K': SPLIT_K} pre_hook = None if SPLIT_K == 1 else lambda nargs: nargs['C'].zero_() configs = [triton.Config(kwargs=kwargs, num_warps=NWARP, num_stages=NSTAGE, pre_hook=pre_hook)] kernel = triton.ops._matmul.kernel decorators = kernel.kernel_decorators kernel.kernel_decorators = [] triton.autotune(configs, [])(kernel) kernel.kernel_decorators += decorators[1:] # get matrix shape M = BLOCK_M if M is None else M N = BLOCK_N if N is None else N K = BLOCK_K * SPLIT_K if K is None else K # allocate/transpose inputs DTYPE = {"float16": torch.float16, "float32": torch.float32}[DTYPE] a = .1*torch.randn((K, M) if AT else (M, K), device="cuda", dtype=DTYPE) b = .1*torch.randn((N, K) if BT else (K, N), device="cuda", dtype=DTYPE) a = a.t() if AT else a b = b.t() if BT else b # run test th_c = torch.matmul(a, b) tt_c = triton.testing.catch_oor(lambda : triton.ops.matmul(a, b), pytest) triton.testing.assert_almost_equal(th_c, tt_c)