""" Fused Softmax ================= """ # %% # Custom GPU kernels for elementwise additions are educationally valuable but won't get you very far in practice. # Let us consider instead the case of a simple (numerically stabilized) softmax operation: import torch # Compute the row-wise softmax of x \in R^{M \times N} def naive_softmax(x): # read MN elements ; write M elements x_max = torch.max(x, axis=1)[0] # read 2MN elements ; write MN elements z = x - x_max[:, None] # read MN elements ; write MN elements numerator = torch.exp(x) # read MN elements ; write M elements denominator = torch.sum(numerator, axis=1) # read 2MN elements ; write MN elements ret = numerator / denominator[:, None] # in total: read 7MN elements ; wrote 3MN + 2M elements return ret # %% # When implemented naively in pytorch, computing :math:`y` requires reading :math:`7MN` elements from DRAM and writing back :math:`3MN + 2M` elements. # Instead, we want to write a custom "fused" pytorch operators that only reads X once and does all the necessary computations on-chip. This would require reading and writing back only :math:`MN` bytes, so we could expect a theoretical speed-up of 5x. In practice, though, we expect less because our kernel will spend some time computing exponentials and moving data around in shared memory. # %% # Writing the Compute Kernel # ---------------------------- # Our softmax kernel works as follows: each program loads a row of X and writes back a normalized row of Y. Note that one important limitation of Triton is that each block must have a power-of-two number of elements, which means that we need to guard the memory operations properly if we want to handle any possible input shapes: # # .. code-block:: C # # __global__ void softmax(float* Y, float* X, int stride_xm, int stride_ym, int M, int N){ # // row index # int m = get_program_id(0); # // column indices # int n [BLOCK] = 0 ... BLOCK; # // the memory address of all the elements # // that we want to load can be computed as follows # float* px [BLOCK] = X + m*stride_xm + n; # // because BLOCK has to be a power of two # // (per Triton-C specs), it is important # // to guard each memory operation with predicates # // or we will read out of bounds # bool check[BLOCK] = n < N; # float x [BLOCK] = check ? *px : -F32_INFINITY; # // syntax for reduction in Triton is: # // x[..., OPERATOR, ...] # // ^ # // index # // The operators currently supported are {min, max, +} # float z [BLOCK] = x - x[max]; # // The exponential in Triton is fast but approximate # // (i.e., like __expf in CUDA) # float num [BLOCK] = exp(z); # float denom = num[+]; # // The result of the reduction is now stored in y # float y [BLOCK] = num / denom; # // We write it back # float* py [BLOCK] = Y + m*stride_ym + n; # *?(check)py = y; # } # %% # Writing the Compute Kernel # ---------------------------- import torch import triton # %% # source-code for Triton compute kernel _src = """ __global__ void softmax(float* Y, float* X, int stride_ym, int stride_xm, int M, int N){ int m = get_program_id(0); int n [BLOCK] = 0 ... BLOCK; float* px [BLOCK] = X + m*stride_xm + n; bool check[BLOCK] = n < N; float x [BLOCK] = check ? *px : -F32_INFINITY; float z [BLOCK] = x - x[max]; float num [BLOCK] = exp(z); float denom = num[+]; float y [BLOCK] = num / denom; float* py [BLOCK] = Y + m*stride_ym + n; *?(check)py = y; } """ # %% # Writing the Torch bindings # ---------------------------- # We need to make sure that BLOCK is the smallest power of two # greater than the number of rows N of the input matrix. # Different values of BLOCK will result in different kernels def next_power_of_2(n): n -= 1 n |= n >> 1 n |= n >> 2 n |= n >> 4 n |= n >> 8 n |= n >> 16 n += 1 return n _kernels = dict() def make_kernel(N, device): BLOCK = next_power_of_2(N) key = (BLOCK, device) if key not in _kernels: defines = {'BLOCK': BLOCK} _kernels[key] = triton.kernel(_src, device=device, defines=defines) return _kernels[key] class _softmax(torch.autograd.Function): @staticmethod def forward(ctx, x): # constraints of the op assert x.dtype == torch.float32 y = torch.empty_like(x) # *create launch grid*: # here we just launch a grid of M programs M, N = y.shape grid = lambda opt: (M, ) # *launch kernel*: kernel = make_kernel(N, y.device) kernel(y.data_ptr(), x.data_ptr(), y.stride(0), x.stride(0), M, N, grid=grid) return y softmax = _softmax.apply # %% # Unit Test # ---------- x = torch.randn(1823, 781, device='cuda') y_tri = softmax(x) y_ref = torch.softmax(x, axis=1) print(y_tri) print(y_ref) print(torch.allclose(y_tri, y_ref)) # %% # Seems to work! # %% # Benchmark # ---------- import matplotlib.pyplot as plt M = 4096 Ns = [128 * i for i in range(2, 50)] tri_ms = [] ref_ms = [] def_ms = [] for N in Ns: x = torch.randn(M, N, device='cuda', dtype=torch.float32) gbps = lambda ms: x.nelement() * x.element_size() * 1e-9 / (ms * 1e-3) tri_ms += [gbps(triton.testing.do_bench(lambda: softmax(x)))] ref_ms += [gbps(triton.testing.do_bench(lambda: torch.softmax(x, axis=1)))] def_ms += [gbps(triton.testing.do_bench(lambda: naive_softmax(x)))] plt.xlabel('N') plt.ylabel('Bandwidth (GB/s)') plt.plot(Ns, tri_ms, label='Triton') plt.plot(Ns, ref_ms, label='Torch') plt.plot(Ns, def_ms, label='Naive') plt.legend() plt.show()