import numpy as np import torch import torch.nn as nn class ScaledDotProductAttention(nn.Module): ''' Scaled Dot-Product Attention ''' def __init__(self, temperature, attn_dropout=0.1): super().__init__() self.temperature = temperature self.softmax = nn.Softmax(dim=2) def forward(self, q, k, v, mask=None): attn = torch.bmm(q, k.transpose(1, 2)) attn = attn / self.temperature if mask is not None: attn = attn.masked_fill(mask, -np.inf) attn = self.softmax(attn) output = torch.bmm(attn, v) return output, attn class MultiHeadAttention(nn.Module): ''' Multi-Head Attention module ''' def __init__(self, n_head, d_model, d_k, d_v): super().__init__() self.n_head = n_head self.d_k = d_k self.d_v = d_v # linear layers self.w_qs = nn.Linear(d_model, n_head * d_k) self.w_ks = nn.Linear(d_model, n_head * d_k) self.w_vs = nn.Linear(d_model, n_head * d_v) self.fc = nn.Linear(n_head * d_v, d_model) # initialize weights nn.init.normal_(self.w_qs.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_k))) nn.init.normal_(self.w_ks.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_k))) nn.init.normal_(self.w_vs.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_v))) nn.init.xavier_normal_(self.fc.weight) # normalization self.layer_norm = nn.LayerNorm(d_model) # scaled dot-product self.attention = ScaledDotProductAttention(temperature=np.power(d_k, 0.5)) def forward(self, q, k, v, mask=None): # dimensions d_k, d_v, n_head = self.d_k, self.d_v, self.n_head sz_b, len_q, _ = q.size() sz_b, len_k, _ = k.size() sz_b, len_v, _ = v.size() # linear transformations residual = q q = self.w_qs(q).view(sz_b, len_q, n_head, d_k) k = self.w_ks(k).view(sz_b, len_k, n_head, d_k) v = self.w_vs(v).view(sz_b, len_v, n_head, d_v) # scaled dot-product attention q = q.permute(2, 0, 1, 3).contiguous().view(-1, len_q, d_k) # (n*b) x lq x dk k = k.permute(2, 0, 1, 3).contiguous().view(-1, len_k, d_k) # (n*b) x lk x dk v = v.permute(2, 0, 1, 3).contiguous().view(-1, len_v, d_v) # (n*b) x lv x dv if mask: mask = mask.repeat(n_head, 1, 1) # (n*b) x .. x .. output, attn = self.attention(q, k, v, mask=mask) # linear transformation output = output.view(n_head, sz_b, len_q, d_v) output = output.permute(1, 2, 0, 3).contiguous().view(sz_b, len_q, -1) # b x lq x (n*dv) output = self.fc(output) # normalization output = self.layer_norm(output + residual) return output, attn