.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "getting-started/tutorials/07-libdevice-function.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_getting-started_tutorials_07-libdevice-function.py: Libdevice function =============== Triton can invoke a custom function from an external library. In this example, we will use the `libdevice` library to apply `asin` on a tensor. Please refer to https://docs.nvidia.com/cuda/libdevice-users-guide/index.html regarding the semantics of all available libdevice functions. In `trition/language/libdevice.py`, we try to aggregate functions with the same computation but different data types together. For example, both `__nv_asin` and `__nvasinf` calculate the principal value of the arc sine of the input, but `__nv_asin` operates on `double` and `__nv_asinf` operates on `float`. Using triton, you can simply call `tl.libdevice.asinf`. triton automatically selects the correct underlying device function to invoke based on input and output types. .. GENERATED FROM PYTHON SOURCE LINES 15-17 asin Kernel -------------------------- .. GENERATED FROM PYTHON SOURCE LINES 17-39 .. code-block:: default import torch import triton import triton.language as tl @triton.jit def asin_kernel( x_ptr, y_ptr, n_elements, BLOCK_SIZE: tl.constexpr, ): pid = tl.program_id(axis=0) block_start = pid * BLOCK_SIZE offsets = block_start + tl.arange(0, BLOCK_SIZE) mask = offsets < n_elements x = tl.load(x_ptr + offsets, mask=mask) x = tl.libdevice.asin(x) tl.store(y_ptr + offsets, x, mask=mask) .. GENERATED FROM PYTHON SOURCE LINES 40-43 Using the default libdevice library path -------------------------- We can use the default libdevice library path encoded in `triton/language/libdevice.py` .. GENERATED FROM PYTHON SOURCE LINES 43-61 .. code-block:: default torch.manual_seed(0) size = 98432 x = torch.rand(size, device='cuda') output_triton = torch.zeros(size, device='cuda') output_torch = torch.asin(x) assert x.is_cuda and output_triton.is_cuda n_elements = output_torch.numel() grid = lambda meta: (triton.cdiv(n_elements, meta['BLOCK_SIZE']),) asin_kernel[grid](x, output_triton, n_elements, BLOCK_SIZE=1024) print(output_torch) print(output_triton) print( f'The maximum difference between torch and triton is ' f'{torch.max(torch.abs(output_torch - output_triton))}' ) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none tensor([0.4105, 0.5430, 0.0249, ..., 0.0424, 0.5351, 0.8149], device='cuda:0') tensor([0.4105, 0.5430, 0.0249, ..., 0.0424, 0.5351, 0.8149], device='cuda:0') The maximum difference between torch and triton is 2.384185791015625e-07 .. GENERATED FROM PYTHON SOURCE LINES 62-65 Customize the libdevice library path -------------------------- We can also customize the libdevice library path by passing the path to the `libdevice` library to the `asin` kernel. .. GENERATED FROM PYTHON SOURCE LINES 65-75 .. code-block:: default output_triton = torch.empty_like(x) asin_kernel[grid](x, output_triton, n_elements, BLOCK_SIZE=1024, extern_libs={'libdevice': '/usr/local/cuda/nvvm/libdevice/libdevice.10.bc'}) print(output_torch) print(output_triton) print( f'The maximum difference between torch and triton is ' f'{torch.max(torch.abs(output_torch - output_triton))}' ) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none tensor([0.4105, 0.5430, 0.0249, ..., 0.0424, 0.5351, 0.8149], device='cuda:0') tensor([0.4105, 0.5430, 0.0249, ..., 0.0424, 0.5351, 0.8149], device='cuda:0') The maximum difference between torch and triton is 2.384185791015625e-07 .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 0.254 seconds) .. _sphx_glr_download_getting-started_tutorials_07-libdevice-function.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: 07-libdevice-function.py <07-libdevice-function.py>` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: 07-libdevice-function.ipynb <07-libdevice-function.ipynb>` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_